Commit Graph

11254 Commits

Author SHA1 Message Date
Guillaume Gomez
7659ef47f0 Use include command to reduce code duplication 2024-04-05 21:38:55 +02:00
Michael Goulet
3674032eb2 Rework the ByMoveBody shim to actually work correctly 2024-04-05 15:28:13 -04:00
Urgau
2f2d5cc38d Put non_local_definitions lint back to warn-by-default 2024-04-05 19:25:58 +02:00
Urgau
8edf2558d2 Update non-local impl definition lint rule note 2024-04-05 19:25:58 +02:00
Urgau
a1d7bff7ef Eliminate false-positives in the non-local lint with the type-system 2024-04-05 19:25:43 +02:00
Guillaume Gomez
0d5ee650f8 Rollup merge of #123474 - jieyouxu:issue-7349-port, r=Mark-Simulacrum
Port `run-make/issue-7349` to a codegen test

The test does not need to be a run-make test, it can use the codegen test infrastructure.

Also took the opportunity to rename the test to `no-redundant-item-monomorphization` so it's not just some opaque issue number.

Part of #121876.
2024-04-05 16:38:51 +02:00
Guillaume Gomez
02ee8a8cee Rollup merge of #123350 - compiler-errors:async-closure-by-move, r=oli-obk
Actually use the inferred `ClosureKind` from signature inference in coroutine-closures

A follow-up to https://github.com/rust-lang/rust/pull/123349, which fixes another subtle bug: We were not taking into account the async closure kind we infer during closure signature inference.

When I pass a closure directly to an arg like `fn(x: impl async FnOnce())`, that should have the side-effect of artificially restricting the kind of the async closure to `ClosureKind::FnOnce`. We weren't doing this -- that's a quick fix; however, it uncovers a second, more subtle bug with the way that `move`, async closures, and `FnOnce` interact.

Specifically, when we have an async closure like:
```
let x = Struct;
let c = infer_as_fnonce(async move || {
  println!("{x:?}");
}
```

The outer closure captures `x` by move, but the inner coroutine still immutably borrows `x` from the outer closure. Since we've forced the closure to by `async FnOnce()`, we can't actually *do* a self borrow, since the signature of `AsyncFnOnce::call_once` doesn't have a borrowed lifetime. This means that all `async move` closures that are constrained to `FnOnce` will fail borrowck.

We can fix that by detecting this case specifically, and making the *inner* async closure `move` as well. This is always beneficial to closure analysis, since if we have an `async FnOnce()` that's `move`, there's no reason to ever borrow anything, so `move` isn't artificially restrictive.
2024-04-05 16:38:51 +02:00
Guillaume Gomez
f2f8d8b722 Rollup merge of #123311 - Jules-Bertholet:andpat-everywhere, r=Nadrieril
Match ergonomics: implement "`&`pat everywhere"

Implements the eat-two-layers (feature gate `and_pat_everywhere`, all editions) ~and the eat-one-layer (feature gate `and_eat_one_layer_2024`, edition 2024 only, takes priority on that edition when both feature gates are active)~ (EDIT: will be done in later PR) semantics.

cc #123076

r? ``@Nadrieril``

``@rustbot`` label A-patterns A-edition-2024
2024-04-05 16:38:50 +02:00
Guillaume Gomez
c36c009577 Rollup merge of #123149 - jieyouxu:rmake-arguments-non-c-like-enum, r=Mark-Simulacrum
Port argument-non-c-like-enum to Rust

Part of #121876.
2024-04-05 16:38:50 +02:00
Guillaume Gomez
cb6a1c8d45 Rollup merge of #122894 - compiler-errors:downgrade, r=lcnr
Move check for error in impl header outside of reporting

Fixes #121006

r? lcnr

test location kinda sucks, can move it if needed
2024-04-05 16:38:49 +02:00
bors
c0ddaef075 Auto merge of #123444 - saethlin:const-eval-inline-cycles, r=tmiasko
Teach MIR inliner query cycle avoidance about const_eval_select

Fixes https://github.com/rust-lang/rust/issues/122659

r? tmiasko
2024-04-05 04:34:05 +00:00
Ramon de C Valle
2498a9d464 CFI: Restore typeid_for_instance default behavior
Restore typeid_for_instance default behavior of performing self type
erasure, since it's the most common case and what it does most of the
time. Using concrete self (or not performing self type erasure) is for
assigning a secondary type id, and secondary type ids are only assigned
when they're unique and to methods, and also are only tested for when
methods are used as function pointers.
2024-04-04 21:19:33 -07:00
Jacob Pratt
e8b0c30578 Rollup merge of #123478 - maurer:cfi-call-once-addr-taken, r=compiler-errors
CFI: Add test for `call_once` addr taken

One of the proposed ways to reduce the non-passed argument erasure would cause this test to fail. Adding this now ensures that any attempt to reduce non-passed argument erasure won't make the same mistake.

r? `@compiler-errors`

cc `@rcvalle`
2024-04-04 21:16:59 -04:00
Jacob Pratt
ac298726af Rollup merge of #123407 - GuillaumeGomez:js-failed-theme, r=notriddle
Default to light theme if JS is enabled but not working

It doesn't [fix] #123399 but it allows to reduce the problem:

* if JS is completely disabled, then `noscript.css` will be applied
* if JS failed for any reason, then the light theme will be applied (because `noscript.css` won't be applied)

r? `@notriddle`
2024-04-04 21:16:56 -04:00
Jacob Pratt
fcb0e9d07a Rollup merge of #123363 - lcnr:normalizes-to-zero-to-inf, r=BoxyUwU
change `NormalizesTo` to fully structurally normalize

notes in https://hackmd.io/wZ016dE4QKGIhrOnHLlThQ

need to also update the dev-guide once this PR lands. in short, the setup is now as follows:

`normalizes-to` internally implements one step normalization, applying that normalization to the `goal.predicate.term` causes the projected term to get recursively normalized. With this `normalizes-to` normalizes until the projected term is rigid, meaning that we normalize as many steps necessary, but at least 1.

To handle rigid aliases, we add another candidate only if the 1 to inf step normalization failed. With this `normalizes-to` is now full structural normalization. We can now change `AliasRelate` to simply emit `normalizes-to` goals for the rhs and lhs.

This avoids the concerns from https://github.com/rust-lang/trait-system-refactor-initiative/issues/103 and generally feels cleaner
2024-04-04 21:16:56 -04:00
Michael Goulet
55e46612c1 Force move async-closures that are FnOnce to make their inner coroutines also move 2024-04-04 19:44:51 -04:00
Michael Goulet
3d9d5d7c96 Actually use the inferred ClosureKind from signature inference in coroutine-closures 2024-04-04 19:44:35 -04:00
icedrocket
e82f46ab72 Ignore -C strip on MSVC 2024-04-05 08:18:01 +09:00
Matthew Maurer
b53a0f2c9e CFI: Add test for call_once addr taken
One of the proposed ways to reduce the non-passed argument erasure would
cause this test to fail. Adding this now ensures that any attempt to
reduce non-passed argument erasure won't make the same mistake.
2024-04-04 22:06:58 +00:00
Guillaume Gomez
a815b97850 Add regression test to ensure that even if JS is enabled but not working, a theme will still get applied 2024-04-04 23:49:34 +02:00
许杰友 Jieyou Xu (Joe)
476156aedf Port issue-7349 to a codegen test 2024-04-04 21:59:08 +01:00
Michael Goulet
43dae69341 Check def id before calling match_projection_projections 2024-04-04 16:01:13 -04:00
bors
a4b11c8e60 Auto merge of #121394 - oli-obk:define_opaque_types, r=compiler-errors
some smaller DefiningOpaqueTypes::No -> Yes switches

r? `@compiler-errors`

These are some easy cases, so let's get them out of the way first.
I added tests exercising the specialization code paths that I believe weren't tested so far.

follow-up to https://github.com/rust-lang/rust/pull/117348
2024-04-04 17:42:07 +00:00
Guillaume Gomez
5a0be6ff3d Add regression test for #123435 2024-04-04 18:10:52 +02:00
Oli Scherer
4e8d2f0040 Add regression test 2024-04-04 15:45:50 +00:00
Oli Scherer
0183d92df0 Allow defining opaque types when checking const equality bounds 2024-04-04 15:43:02 +00:00
bors
0fd571286e Auto merge of #123377 - oli-obk:private_projection, r=compiler-errors
Only inspect user-written predicates for privacy concerns

fixes #123288

Previously we looked at the elaborated predicates, which, due to adding various bounds on fields, end up requiring trivially true bounds. But these bounds can contain private types, which the privacy visitor then found and errored about.
2024-04-04 15:39:00 +00:00
Oli Scherer
29fba9f994 Add regression test 2024-04-04 15:15:21 +00:00
Oli Scherer
8e226e092e Add some regression tests for opaque types and const generics 2024-04-04 15:02:27 +00:00
Oli Scherer
ba316a902d amend to Switch can_eq and can_sub to DefineOpaqueTypes::Yes 2024-04-04 14:53:31 +00:00
Oli Scherer
83bd12c70f Only inspect user-written predicates for privacy concerns 2024-04-04 14:43:44 +00:00
Oli Scherer
169a045dca Switch upcast projections to allowing opaque types and add a test showing it works.
The old solver was already ICEing on this test before this change
2024-04-04 14:25:50 +00:00
Oli Scherer
cdcca7e8f4 Switch can_eq and can_sub to DefineOpaqueTypes::Yes
They are mostly used in diagnostics anyway
2024-04-04 14:25:45 +00:00
Matthias Krüger
ad300b6738 Rollup merge of #123431 - slanterns:literal_byte_character_c_string_stabilize, r=dtolnay
Stabilize `proc_macro_byte_character` and `proc_macro_c_str_literals`

This PR stabilizes `proc_macro_byte_character` and `proc_macro_c_str_literals`:

```rust
// proc_macro::Literal

impl Literal {
    pub fn byte_character(byte: u8) -> Literal;
    pub fn c_string(string: &CStr) -> Literal
}
```

<br>

Tracking issue: https://github.com/rust-lang/rust/issues/115268, https://github.com/rust-lang/rust/issues/119750.
Implementation PR: https://github.com/rust-lang/rust/pull/112711, https://github.com/rust-lang/rust/pull/119651.

FCPs already completed in their respective tracking issues.

Closes https://github.com/rust-lang/rust/issues/115268. Closes https://github.com/rust-lang/rust/issues/119750.

r? libs-api
2024-04-04 14:51:18 +02:00
Matthias Krüger
f254ab08f1 Rollup merge of #123397 - krtab:foreign_fn_qualif_diag, r=petrochenkov
Fix diagnostic for qualifier in extern block

Closes: https://github.com/rust-lang/rust/issues/123306
2024-04-04 14:51:17 +02:00
Matthias Krüger
504a78e2f2 Rollup merge of #123324 - Nadrieril:false-edges2, r=matthewjasper
match lowering: make false edges more precise

When lowering match expressions, we add false edges to hide details of the lowering from borrowck. Morally we pretend we're testing the patterns (and guards) one after the other in order. See the tests for examples. Problem is, the way we implement this today is too coarse for deref patterns.

In deref patterns, a pattern like `deref [1, x]` matches on a `Vec` by creating a temporary to store the output of the call to `deref()` and then uses that to continue matching. Here the pattern has a binding, which we set up after the pre-binding block. Problem is, currently the false edges tell borrowck that the pre-binding block can be reached from a previous arm as well, so the `deref()` temporary may not be initialized. This triggers an error when we try to use the binding `x`.

We could call `deref()` a second time, but this opens the door to soundness issues if the deref impl is weird. Instead in this PR I rework false edges a little bit.

What we need from false edges is a (fake) path from each candidate to the next, specifically from candidate C's pre-binding block to next candidate D's pre-binding block. Today, we link the pre-binding blocks directly. In this PR, I link them indirectly by choosing an earlier node on D's success path. Specifically, I choose the earliest block on D's success path that doesn't make a loop (if I chose e.g. the start block of the whole match (which is on the success path of all candidates), that would make a loop). This turns out to be rather straightforward to implement.

r? `@matthewjasper` if you have the bandwidth, otherwise let me know
2024-04-04 14:51:16 +02:00
Matthias Krüger
7c2d4eaf92 Rollup merge of #123218 - compiler-errors:synthetic-hir-parent, r=petrochenkov
Add test for getting parent HIR for synthetic HIR node

Fixes #122991, which was actually fixed by #123415
2024-04-04 14:51:16 +02:00
Matthias Krüger
0b54db7e3f Rollup merge of #122448 - high-cloud:move-hir-tree, r=oli-obk
Port hir-tree run-make test to ui test

As part of #121876

cc `@jieyouxu`
2024-04-04 14:51:15 +02:00
Matthias Krüger
d5a657c95c Rollup merge of #121546 - gurry:121473-ice-sizeof-mir-op, r=oli-obk
Error out of layout calculation if a non-last struct field is unsized

Fixes #121473
Fixes #123152
2024-04-04 14:51:14 +02:00
Yaodong Yang
2575b8e79c move hir-tree test from run-make to ui test 2024-04-04 18:43:26 +08:00
lcnr
92b280ce81 normalizes-to change from '1' to '0 to inf' steps 2024-04-04 12:39:58 +02:00
Gurinder Singh
313714331a Error out of layout calculation if a non-last struct field is unsized
Fixes an ICE that occurs when a struct with an unsized field
at a non-last position is const evaluated.
2024-04-04 15:50:36 +05:30
Oli Scherer
b8bd981545 Specialization already rejects defining opaque types 2024-04-04 10:01:45 +00:00
Arthur Carcano
109daa2d4b Fix diagnostic for qualifier in extern block
Closes: https://github.com/rust-lang/rust/issues/123306
2024-04-04 11:58:38 +02:00
Oli Scherer
769ab55558 Add regression test 2024-04-04 09:37:25 +00:00
bors
4c6c629866 Auto merge of #115538 - lcnr:fn-def-wf, r=compiler-errors
check `FnDef` return type for WF

better version of #106807, fixes #84533 (mostly). It's not perfect given that we still ignore WF requirements involving bound regions but I wasn't able to quickly write an example, so even if theoretically exploitable, it should be far harder to trigger.

This is strictly more restrictive than checking the return type for WF as part of the builtin `FnDef: FnOnce` impl (#106807) and moving to this approach in the future will not break any code.

~~It also agrees with my theoretical view of how this should behave~~

r? types
2024-04-04 08:43:53 +00:00
bors
29fe618f75 Auto merge of #123052 - maurer:addr-taken, r=compiler-errors
CFI: Support function pointers for trait methods

Adds support for both CFI and KCFI for function pointers to trait methods by attaching both concrete and abstract types to functions.

KCFI does this through generation of a `ReifyShim` on any function pointer for a method that could go into a vtable, and keeping this separate from `ReifyShim`s that are *intended* for vtable us by setting a `ReifyReason` on them.

CFI does this by setting both the concrete and abstract type on every instance.

This should land after #123024 or a similar PR, as it diverges the implementation of CFI vs KCFI.

r? `@compiler-errors`
2024-04-04 06:40:30 +00:00
lcnr
d99c775feb unconstrained NormalizesTo term for opaques 2024-04-04 07:47:22 +02:00
bors
43f4f2a3b1 Auto merge of #119820 - lcnr:leak-check-2, r=jackh726
instantiate higher ranked goals outside of candidate selection

This PR modifies `evaluate` to more eagerly instantiate higher-ranked goals, preventing the `leak_check` during candidate selection from detecting placeholder errors involving that binder.

For a general background regarding higher-ranked region solving and the leak check, see https://hackmd.io/qd9Wp03cQVy06yOLnro2Kg.

> The first is something called the **leak check**. You can think of it as a "quick and dirty" approximation for the region check, which will come later. The leak check detects some kinds of errors early, essentially deciding between "this set of outlives constraints are guaranteed to result in an error eventually" or "this set of outlives constraints may be solvable".

## The ideal future

We would like to end up with the following idealized design to handle universal binders:
```rust
fn enter_forall<'tcx, T, R>(
    forall: Binder<'tcx, T>,
    f: impl FnOnce(T) -> R,
) -> R {
    let new_universe = infcx.increment_universe_index();
    let value = instantiate_binder_with_placeholders_in(new_universe, forall);

    let result = f(value);

    eagerly_handle_higher_ranked_region_constraints_in(new_universe);
    infcx.decrement_universe_index();

    assert!(!result.has_placeholders_in_or_above(new_universe));
    result
}
```

That is, when universally instantiating a binder, anything using the placeholders has to happen inside of a limited scope (the closure `f`). After this closure has completed, all constraints involving placeholders are known.

We then handle any *external constraints* which name these placeholders. We destructure `TypeOutlives` constraints involving placeholders and eagerly handle any region constraints involving these placeholders. We do not return anything mentioning the placeholders created inside of this function to the caller.

Being able to eagerly handle *all* region constraints involving placeholders will be difficult due to complex `TypeOutlives` constraints, involving inference variables or alias types, and higher ranked implied bounds. The exact issues and possible solutions are out of scope of this FCP.

#### How does the leak check fit into this

The `leak_check` is an underapproximation of `eagerly_handle_higher_ranked_region_constraints_in`. It detects some kinds of errors involving placeholders from `new_universe`, but not all of them.

It only looks at region outlives constraints, ignoring `TypeOutlives`, and checks whether one of the following two conditions are met for **placeholders in or above `new_universe`**, in which case it results in an error:
- `'!p1: '!p2` a placeholder `'!p2` outlives a different placeholder `'!p1`
- `'!p1: '?2` an inference variable `'?2` outlives a placeholder `'!p1` *which it cannot name*

It does not handle all higher ranked region constraints, so we still return constraints involving placeholders from `new_universe` which are then (re)checked by `lexical_region_resolve` or MIR borrowck.

As we check higher ranked constraints in the full regionck anyways, the `leak_check` is not soundness critical. It's current only purpose is to move some higher ranked region errors earlier, enabling it to guide type inference and trait solving. Adding additional uses of the `leak_check` in the future would only strengthen inference and is therefore not breaking.

## Where do we use currently use the leak check

The `leak_check` is currently used in two places:

Coherence does not use a proper regionck, only relying on the `leak_check` called [at the end of the implicit negative overlap check](8b94152af6/compiler/rustc_trait_selection/src/traits/coherence.rs (L235-L238)). During coherence all parameters are instantiated with inference variables, so the only possible region errors are higher-ranked. We currently also sometimes make guesses when destructuring `TypeOutlives` constraints which can theoretically result in incorrect errors. This could result in overlapping impls.

We also use the `leak_check` [at the end of `fn evaluation_probe`](8b94152af6/compiler/rustc_trait_selection/src/traits/select/mod.rs (L607-L610)). This function is used during candidate assembly for `Trait` goals. Most notably we use [inside of `evaluate_candidate` during winnowing](0e4243538b/compiler/rustc_trait_selection/src/traits/select/mod.rs (L491-L502)). Conceptionally, it is as if we compute each candidate in a separate `enter_forall`.

## The current use in `fn evaluation_probe` is undesirable

Because we only instantiate a higher-ranked goal once inside of `fn evaluation_probe`, errors involving placeholders from that binder can impact selection. This results in inconsistent behavior ([playground](
*[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=dac60ebdd517201788899ffa77364831)*)):

```rust
trait Leak<'a> {}
impl Leak<'_>      for Box<u32> {}
impl Leak<'static> for Box<u16> {}

fn impls_leak<T: for<'a> Leak<'a>>() {}

trait IndirectLeak<'a> {}
impl<'a, T: Leak<'a>> IndirectLeak<'a> for T {}
fn impls_indirect_leak<T: for<'a> IndirectLeak<'a>>() {}

fn main() {
    // ok
    //
    // The `Box<u16>` impls fails the leak check,
    // meaning that we apply the `Box<u32>` impl.
    impls_leak::<Box<_>>();

    // error: type annotations needed
    //
    // While the `Box<u16>` impl would fail the leak check
    // we have already instantiated the binder while applying
    // the generic `IndirectLeak` impl, so during candidate
    // selection of `Leak` we do not detect the placeholder error.
    // Evaluation of `Box<_>: Leak<'!a>` is therefore ambiguous,
    // resulting in `for<'a> Box<_>: Leak<'a>` also being ambiguous.
    impls_indirect_leak::<Box<_>>();
}
```

We generally prefer `where`-bounds over implementations during candidate selection, both for [trait goals](11f32b73e0/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1863-L1887)) and during [normalization](11f32b73e0/compiler/rustc_trait_selection/src/traits/project.rs (L184-L198)). However, we currently **do not** use the `leak_check` during candidate assembly in normalizing. This can result in inconsistent behavior:
```rust
trait Trait<'a> {
    type Assoc;
}
impl<'a, T> Trait<'a> for T {
    type Assoc = usize;
}

fn trait_bound<T: for<'a> Trait<'a>>() {}
fn projection_bound<T: for<'a> Trait<'a, Assoc = usize>>() {}

// A function with a trivial where-bound which is more
// restrictive than the impl.
fn function<T: Trait<'static, Assoc = usize>>() {
    // ok
    //
    // Proving `for<'a> T: Trait<'a>` using the where-bound results
    // in a leak check failure, so we use the more general impl,
    // causing this to succeed.
    trait_bound::<T>();

    // error
    //
    // Proving the `Projection` goal `for<'a> T: Trait<'a, Assoc = usize>`
    // does not use the leak check when trying the where-bound, causing us
    // to prefer it over the impl, resulting in a placeholder error.
    projection_bound::<T>();

    // error
    //
    // Trying to normalize the type `for<'a> fn(<T as Trait<'a>>::Assoc)`
    // only gets to `<T as Trait<'a>>::Assoc` once `'a` has been already
    // instantiated, causing us to prefer the where-bound over the impl
    // resulting in a placeholder error. Even if were were to also use the
    // leak check during candidate selection for normalization, this
    // case would still not compile.
    let _higher_ranked_norm: for<'a> fn(<T as Trait<'a>>::Assoc) = |_| ();
}
```

This is also likely to be more performant. It enables more caching in the new trait solver by simply [recursively calling the canonical query][new solver] after instantiating the higher-ranked goal.

It is also unclear how to add the leak check to normalization in the new solver. To handle https://github.com/rust-lang/trait-system-refactor-initiative/issues/1 `Projection` goals are implemented via `AliasRelate`. This again means that we instantiate the binder before ever normalizing any alias. Even if we were to avoid this, we lose the ability to [cache normalization by itself, ignoring the expected `term`](5bd5d214ef/compiler/rustc_trait_selection/src/solve/normalizes_to/mod.rs (L34-L49)). We cannot replace the `term` with an inference variable before instantiating the binder, as otherwise `for<'a> T: Trait<Assoc<'a> = &'a ()>` breaks. If we only replace the term after instantiating the binder, we cannot easily evaluate the goal in a separate context, as [we'd then lose the information necessary for the leak check](11f32b73e0/compiler/rustc_next_trait_solver/src/canonicalizer.rs (L230-L232)). Adding this information to the canonical input also seems non-trivial.

## Proposed solution

I propose to instantiate the binder outside of candidate assembly, causing placeholders from higher-ranked goals to get ignored while selecting their candidate. This mostly[^1] matches the [current behavior of the new solver][new solver]. The impact of this change is therefore as follows:

```rust
trait Leak<'a> {}
impl Leak<'_>      for Box<u32> {}
impl Leak<'static> for Box<u16> {}

fn impls_leak<T: for<'a> Leak<'a>>() {}

trait IndirectLeak<'a> {}
impl<'a, T: Leak<'a>> IndirectLeak<'a> for T {}
fn impls_indirect_leak<T: for<'a> IndirectLeak<'a>>() {}

fn guide_selection() {
    // ok -> ambiguous
    impls_leak::<Box<_>>();

    // ambiguous
    impls_indirect_leak::<Box<_>>();
}

trait Trait<'a> {
    type Assoc;
}
impl<'a, T> Trait<'a> for T {
    type Assoc = usize;
}

fn trait_bound<T: for<'a> Trait<'a>>() {}
fn projection_bound<T: for<'a> Trait<'a, Assoc = usize>>() {}

// A function which a trivial where-bound which is more
// restrictive than the impl.
fn function<T: Trait<'static, Assoc = usize>>() {
    // ok -> error
    trait_bound::<T>();

    // error
    projection_bound::<T>();

    // error
    let _higher_ranked_norm: for<'a> fn(<T as Trait<'a>>::Assoc) = |_| ();
}
```

This does not change the behavior if candidates have higher ranked nested goals, as in this case the `leak_check` causes the nested goal to result in an error ([playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=a74c25300b23db9022226de99d8a2fa6)):
```rust
trait LeakCheckFailure<'a> {}
impl LeakCheckFailure<'static> for () {}

trait Trait<T> {}
impl Trait<u32> for () where for<'a> (): LeakCheckFailure<'a> {}
impl Trait<u16> for () {}
fn impls_trait<T: Trait<U>, U>() {}
fn main() {
    // ok
    //
    // It does not matter whether candidate assembly
    // considers the placeholders from higher-ranked goal.
    //
    // Either `for<'a> (): LeakCheckFailure<'a>` has no
    // applicable candidate or it has a single applicable candidate
    // when then later results in an error. This allows us to
    // infer `U` to `u16`.
    impls_trait::<(), _>()
}
```

## Impact on existing crates

This is a **breaking change**. [A crater run](https://github.com/rust-lang/rust/pull/119820#issuecomment-1926862174) found 17 regressed crates with 7 root causes.

For a full analysis of all affected crates, see https://gist.github.com/lcnr/7c1c652f30567048ea240554a36ed95c.

---

I believe this breakage to be acceptable and would merge this change. I am confident that the new position of the leak check matches our idealized future and cannot envision any other consistent alternative. Where possible, I intend to open PRs fixing/avoiding the regressions before landing this PR.

I originally intended to remove the `coherence_leak_check` lint in the same PR. However, while I am confident in the *position* of the leak check, deciding on its exact behavior is left as future work, cc #112999. This PR therefore only moves the leak check while keeping the lint when relying on it in coherence.

[new solver]: https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/eval_ctxt/mod.rs#L479-L484

[^1]: the new solver has a separate cause of inconsistent behavior rn https://github.com/rust-lang/trait-system-refactor-initiative/issues/53#issuecomment-1914310171

r? `@nikomatsakis`
2024-04-04 04:36:12 +00:00
Ben Kimock
b0b7c860e1 Teach MIR inliner query cycle avoidance about const_eval_select 2024-04-04 00:10:52 -04:00