Remove minor future footgun in `impl Debug for MaybeUninit`
No longer breaks if `MaybeUninit` moves modules (technically it could break if `MaybeUninit` were renamed but realistically that will never happen)
Debug impl originally added in #133282
Add `AsyncFn*` to `core` prelude
In https://github.com/rust-lang/rust/pull/132611 these got added to the `std` prelude only, which looks like an oversight.
r? libs-api
cc `@compiler-errors`
Implement `int_from_ascii` (#134821)
Provides unstable `T::from_ascii()` and `T::from_ascii_radix()` for integer types `T`, as drafted in tracking issue #134821.
To deduplicate documentation without additional macros, implementations of `isize` and `usize` no longer delegate to equivalent integer types. After #132870 they are inlined anyway.
Cleanup docs for Allocator
This is an attempt to remove ungrammatical constructions and clean up the prose. I've sometimes had to try hard to understand what was being stated, so it is possible that I've misunderstood the original meaning. In particular, I did not see a difference between:
- the borrow-checker lifetime of the allocator type itself.
- as long as at least one of the allocator instance and all of its clones has not been dropped.
optimize slice::ptr_rotate for small rotates
r? `@scottmcm`
This swaps the positions and numberings of algorithms 1 and 2 in `slice::ptr_rotate`, and pulls the entire outer loop into algorithm 3 since it was redundant for the first two. Effectively, `ptr_rotate` now always does the `memcpy`+`memmove`+`memcpy` sequence if the shifts fit into the stack buffer.
With this change, an `IndexMap`-style `move_index` function is optimized correctly.
Assembly comparisons:
- `move_index`, before: https://godbolt.org/z/Kr616KnYM
- `move_index`, after: https://godbolt.org/z/1aoov6j8h
- the code from `#89714`, before: https://godbolt.org/z/Y4zaPxEG6
- the code from `#89714`, after: https://godbolt.org/z/1dPx83axc
related to #89714
some relevant discussion in https://internals.rust-lang.org/t/idea-shift-move-to-efficiently-move-elements-in-a-vec/22184
Behavior tests pass locally. I can't get any consistent microbenchmark results on my machine, but the assembly diffs look promising.
* Renames the methods:
* `get_many_mut` -> `get_disjoint_mut`
* `get_many_unchecked_mut` -> `get_disjoint_unchecked_mut`
* Does not rename the feature flag: `get_many_mut`
* Marks the feature as stable
* Renames some helper stuff:
* `GetManyMutError` -> `GetDisjointMutError`
* `GetManyMutIndex` -> `GetDisjointMutIndex`
* `get_many_mut_helpers` -> `get_disjoint_mut_helpers`
* `get_many_check_valid` -> `get_disjoint_check_valid`
This only touches slice methods.
HashMap's methods and feature gates are not renamed here
(nor are they stabilized).
Put the core unit tests in a separate coretests package
Having standard library tests in the same package as a standard library crate has bad side effects. It causes the test to have a dependency on a locally built standard library crate, while also indirectly depending on it through libtest. Currently this works out fine in the context of rust's build system as both copies are identical, but for example in cg_clif's tests I've found it basically impossible to compile both copies with the exact same compiler flags and thus the two copies would cause lang item conflicts.
This PR moves the tests of libcore to a separate package which doesn't depend on libcore, thus preventing the duplicate crates even when compiler flags don't exactly match between building the sysroot (for libtest) and building the test itself. The rest of the standard library crates do still have this issue however.
compiler_fence: fix example
The old example was wrong, an acquire fence is required in the signal handler. To make the point more clear, I changed the "data" variable to use non-atomic accesses.
Fixes https://github.com/rust-lang/rust/issues/133014
Rollup of 7 pull requests
Successful merges:
- #133631 (Support QNX 7.1 with `io-sock`+libstd and QNX 8.0 (`no_std` only))
- #134358 (compiler: Set `target_abi = "ilp32e"` on all riscv32e targets)
- #135812 (Fix GDB `OsString` provider on Windows )
- #135842 (TRPL: more backward-compatible Edition changes)
- #135946 (Remove extra whitespace from rustdoc breadcrumbs for copypasting)
- #135953 (ci.py: check the return code in `run-local`)
- #136019 (Add an `unchecked_div` alias to the `Div<NonZero<_>>` impls)
r? `@ghost`
`@rustbot` modify labels: rollup
Update emscripten std tests
This disables a bunch of emscripten tests that test things emscripten doesn't support and re-enables a whole bunch of tests which now work just fine on emscripten.
Tested with `EMCC_CFLAGS="-s MAXIMUM_MEMORY=2GB" ./x.py test library/ --target wasm32-unknown-emscripten`.
Fix `FormattingOptions` instantiation with `Default`
The `fill` value by default should be set to `' '` (space), but the current implementation uses `#[derive(Default)]` which sets it to `\0`.
Note that `FormattingOptions` is being released as part of 1.85 (unstable) - so this might warrant a backport to that branch.
Tracking issue: https://github.com/rust-lang/rust/issues/118117
Follow up from https://github.com/rust-lang/rust/pull/118159
CC: ``@EliasHolzmann`` ``@programmerjake``
r? ``@m-ou-se``
Add memory layout documentation to generic NonZero<T>
The documentation I've added is based on the same Layout documentation that appears on the other `NonZero*` types. For example see [the Layout docs on `NonZeroI8`](https://doc.rust-lang.org/std/num/type.NonZeroI8.html#layout-1).
remove pointless allowed_through_unstable_modules on TryFromSliceError
This got added in https://github.com/rust-lang/rust/pull/132482 but the PR does not explain why. `@lukas-code` do you still remember? Also Cc `@Noratrieb` as reviewer of that PR.
If I understand the issue description correctly, all paths under which this type is exported are stable now: `core::array::TryFromSliceError` and `std::array::TryFromSliceError`. If that is the case, we shouldn't have the attribute; it's a terrible hack that should only be used when needed to maintain backward compatibility. Getting some historic information right is IMO *not* sufficient justification to risk accidentally exposing this type via more unstable paths today or in the future.