In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
`~const` trait and projection bounds do not imply their non-const counterparts
This PR removes the hack where we install a non-const trait and projection bound for every `const_trait` and `~const` projection bound we have in the AST. It ends up messing up more things than it fixes, see words below.
Fixes#119718
cc `@fmease` `@fee1-dead` `@oli-obk`
r? fee1-dead or one of y'all i don't care
---
My understanding is that this hack was added to support the following code:
```rust
pub trait Owo<X = <Self as Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
Which is concretely lifted from in the `FromResidual` and `Try` traits. Since within the param-env of `trait Uwu`, we only know that `Self: ~const Uwu` and not `Self: Uwu`, the projection `<Self as Uwu>::T` is not satsifyable.
This causes problems such as #119718, since instantiations of `FnDef` types coming from `const fn` really do **only** implement one of `FnOnce` or `const FnOnce`!
---
In the long-term, I believe that such code should really look something more like:
```rust
#[const_trait]
pub trait Owo<X = <Self as ~const Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
... and that we should introduce some sort of `<T as ~const Foo>::Bar` bound syntax, since due to the fact that `~const` bounds can be present in item bounds, e.g.
```rust
#[const_trait] trait Foo { type Bar: ~const Destruct; }
```
It's easy to see that `<T as Foo>::Bar` and `<T as ~const Foo>::Bar` (or `<T as const Foo>::Bar`) can be distinct types with distinct item bounds!
**Admission**: I know I've said before that I don't like `~const` projection syntax, I do at this point believe they're necessary to fully express bounds and types in a maybe-const world.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Clean up `check_consts` and misc fixes
1. Remove most of the logic around erroring with trait methods. I have kept the part resolving it to a concrete impl, as that is used for const stability checks.
2. Turning on `effects` causes ICE with generic args, due to `~const Tr` when `Tr` is not `#[const_trait]` tripping up expectation in code that handles generic args, more specifically here:
8681e077b8/compiler/rustc_hir_analysis/src/astconv/generics.rs (L377)
We set `arg_count.correct` to `Err` to correctly signal that an error has already been reported.
3. UI test blesses.
Edit(fmease): Fixes#117244 (UI test is in #119099 for now).
r? compiler-errors
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Don't pass lint back out of lint decorator
Change the decorator function in the signature of the `emit_lint`/`span_lint`/etc family of methods from `impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>) -> &'b mut DiagnosticBuilder<'a, ()>` to `impl for<'a, 'b> FnOnce(&'b mut DiagnosticBuilder<'a, ()>)`. I consider it easier to read this way, especially when there's control flow involved.
r? nnethercote though feel free to reassign
Collect lang items from AST, get rid of `GenericBound::LangItemTrait`
r? `@cjgillot`
cc #115178
Looking forward, the work to remove `QPath::LangItem` will also be significantly more difficult, but I plan on doing it as well. Specifically, we have to change:
1. A lot of `rustc_ast_lowering` for things like expr `..`
2. A lot of astconv, since we actually instantiate lang and non-lang paths quite differently.
3. A ton of diagnostics and clippy lints that are special-cased via `QPath::LangItem`
Meanwhile, it was pretty easy to remove `GenericBound::LangItemTrait`, so I just did that here.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
Do not erase late bound regions when selecting inherent associated types
In the fix for #97156 we would want the following code:
```rust
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Foo<T>(T);
impl Foo<fn(&'static ())> {
type Assoc = u32;
}
trait Other {}
impl Other for u32 {}
// FIXME(inherent_associated_types): Avoid emitting two diagnostics (they only differ in span).
// FIXME(inherent_associated_types): Enhancement: Spruce up the diagnostic by saying something like
// "implementation is not general enough" as is done for traits via
// `try_report_trait_placeholder_mismatch`.
fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
//~^ ERROR mismatched types
//~| ERROR mismatched types
fn main() {}
```
to fail with ...
```
error[E0220]: associated type `Assoc` not found for `Foo<for<'a> fn(&'a ())>` in the current scope
--> tests/ui/associated-inherent-types/issue-109789.rs:18:36
|
4 | struct Foo<T>(T);
| ------------- associated item `Assoc` not found for this struct
...
18 | fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
| ^^^^^ associated item not found in `Foo<for<'a> fn(&'a ())>`
|
= note: the associated type was found for
- `Foo<fn(&'static ())>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.
```
This PR fixes the ICE we are currently getting "was a subtype of Foo<Binder(fn(&ReStatic ()), [])> during selection but now it is not"
Also fixes#112631
r? `@lcnr`
Suggest trait bounds for used associated type on type param
Fix#101351.
When an associated type on a type parameter is used, and the type parameter isn't constrained by the correct trait, suggest the appropriate trait bound:
```
error[E0220]: associated type `Associated` not found for `T`
--> file.rs:6:15
|
6 | field: T::Associated,
| ^^^^^^^^^^ there is a similarly named associated type `Associated` in the trait `Foo`
|
help: consider restricting type parameter `T`
|
5 | struct Generic<T: Foo> {
| +++++
```
When an associated type on a type parameter has a typo, suggest fixing
it:
```
error[E0220]: associated type `Baa` not found for `T`
--> $DIR/issue-55673.rs:9:8
|
LL | T::Baa: std::fmt::Debug,
| ^^^ there is a similarly named associated type `Bar` in the trait `Foo`
|
help: change the associated type name to use `Bar` from `Foo`
|
LL | T::Bar: std::fmt::Debug,
| ~~~
```
Fix#101351.
When an associated type on a type parameter is used, and the type
parameter isn't constrained by the correct trait, suggest the
appropriate trait bound:
```
error[E0220]: associated type `Associated` not found for `T`
--> file.rs:6:15
|
6 | field: T::Associated,
| ^^^^^^^^^^ there is a similarly named associated type `Associated` in the trait `Foo`
|
help: consider restricting type parameter `T`
|
5 | struct Generic<T: Foo> {
| +++++
```
When an associated type on a type parameter has a typo, suggest fixing
it:
```
error[E0220]: associated type `Baa` not found for `T`
--> $DIR/issue-55673.rs:9:8
|
LL | T::Baa: std::fmt::Debug,
| ^^^ there is a similarly named associated type `Bar` in the trait `Foo`
|
help: change the associated type name to use `Bar` from `Foo`
|
LL | T::Bar: std::fmt::Debug,
| ~~~
```
When the variant and the (wrongly placed) args are at separate
source locations such as being in different macos or one in a macro and
the other somwhere outside of it, the arg spans we computed spanned
the entire distance between such locations and were hence invalid.
.
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
Correctly deny late-bound lifetimes from parent in anon consts and TAITs
Reuse the `AnonConstBoundary` scope (introduced in #108553, renamed in this PR to `LateBoundary`) to deny late-bound vars of *all* kinds (ty/const/lifetime) in anon consts and TAITs.
Side-note, but I would like to consolidate this with the error reporting for RPITs (E0657):
c4f25777a0/compiler/rustc_hir_analysis/src/collect/resolve_bound_vars.rs (L733-L754) but the semantics about what we're allowed to capture there are slightly different, so I'm leaving that untouched.
Fixes#115474