rustc_target: Add target features for LoongArch v1.1
This patch adds new target features for LoongArch v1.1:
* div32
* lam-bh
* lamcas
* ld-seq-sa
* scq
The target feature names are, right now, based on the llvm target feature names. These mostly line up well with the names of [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) names. The linux kernel uses shorter, more cryptic names. (e.g. "vector" is `vx`). We can deviate from the llvm names, but the CPU vendor (IBM) does not appear to use e.g. `vx` for what they call `vector`.
There are a number of implied target features between the vector facilities (based on the [Facility Inidications](https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf#page=301) table):
- 129 The vector facility for z/Architecture is installed in the z/Architecture architectural mode.
- 134 The vector packed decimal facility is installed in the z/Architecture architectural mode. When bit 134 is one, bit 129 is also one.
- 135 The vector enhancements facility 1 is installed in the z/Architecture architectural mode. When bit 135 is one, bit 129 is also one.
- 148 The vector-enhancements facility 2 is installed in the z/Architecture architectural mode. When bit 148 is one, bits 129 and 135 are also one.
- 152 The vector-packed-decimal-enhancement facility 1 is installed in the z/Architecture architectural mode. When bit 152 is one, bits 129 and 134 are also one.
- 165 The neural-network-processing-assist facility is installed in the z/Architecture architectural mode. When bit 165 is one, bit 129 is also one.
- 192 The vector-packed-decimal-enhancement facility 2 is installed in the z/Architecture architectural mode. When bit 192 is one, bits 129, 134, and 152 are also one.
And then there are a number of facilities without any implied target features
- 45 The distinct-operands, fast-BCR-serialization, high-word, and population-count facilities, the interlocked-access facility 1, and the load/store-oncondition facility 1 are installed in the z/Architecture architectural mode.
- 73 The transactional-execution facility is installed in the z/Architecture architectural mode. Bit 49 is one when bit 73 is one.
- 133 The guarded-storage facility is installed in the z/Architecture architectural mode.
- 150 The enhanced-sort facility is installed in the z/Architecture architectural mode.
- 151 The DEFLATE-conversion facility is installed in the z/Architecture architectural mode.
The added target features are those that have ISA implications, can be queried at runtime, and have LLVM support. LLVM [defines more target features](d49a2d2bc9/llvm/lib/Target/SystemZ/SystemZFeatures.td), but I'm not sure those are useful. They can always be added later, and can already be set globally using `-Ctarget-feature`.
```
error[E0610]: `{integer}` is a primitive type and therefore doesn't have fields
--> $DIR/attempted-access-non-fatal.rs:7:15
|
LL | let _ = 2.l;
| ^
|
help: if intended to be a floating point literal, consider adding a `0` after the period and a `f64` suffix
|
LL - let _ = 2.l;
LL + let _ = 2.0f64;
|
```
Add amdgpu target
Add amdgpu target to rustc and enable the LLVM target.
Fix compiling `core` with the amdgpu:
The amdgpu backend makes heavy use of different address spaces. This
leads to situations, where a pointer in one addrspace needs to be casted
to a pointer in a different addrspace. `bitcast` is invalid for this
case, `addrspacecast` needs to be used.
Fix compilation failures that created bitcasts for such cases by
creating pointer casts (which creates an `addrspacecast` under the hood)
instead.
MCP: https://github.com/rust-lang/compiler-team/issues/823
Tracking issue: #135024
Kinda related to the original amdgpu tracking issue #51575 (though that one has been closed for a while).
#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Add `kl` and `widekl` target features, and the feature gate
This is an effort towards #134813. This PR adds the target-features and the feature gate to `rustc`
<!--
```@rustbot``` label O-x86_64 O-x86_32 A-target-feature
r? compiler
-->
compiler: Set `target_abi = "ilp32e"` on all riscv32e targets
This allows compile-time configuration based on this. In the near future we should do this across all RISCV targets, probably, but this cfg is essential for building software usable on these targets, and they are tier 3 so it seems less of a concern to tweak their definition thusly.
Support QNX 7.1 with `io-sock`+libstd and QNX 8.0 (`no_std` only)
Changes of this pull request:
1. Refactor code for qnx nto targets to share more code in file `nto_qnx.rs`
1. Add support for an additional network stack on nto qnx 7.1.
QNX 7.1 supports two network stacks:
1. `io-pkt`, which is default
2. `io-sock`, which is optional on 7.1 but default in QNX 8.0
As one can see in the [io-sock migration notes](https://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.neutrino.io_sock/topic/migrate_app.html), this changes the libc API in a way similar to e.g. linux-gnu vs. linux-musl.
This change adds a new target which has a different value for `target_env`, so that e.g. libc can distinguish between both APIs.
2. Add initial support for QNX 8.0, thanks to AkhilTThomas. As it turned out, the problem with forking many processes still exists in QNX 8.0. Because if this, we are now using it for any QNX version (i.e. not check for `target_env` anymore).
Do the same thing as gcc, which use the vendor `mti` to mark
the toolchain as MIPS32r2 default.
We support both big endian and little endian flavor:
mips-mti-none-elf
mipsel-mti-none-elf
This allows compile-time configuration based on this.
In the near future we should do this across all RISCV targets, probably,
but this cfg is essential for building software usable on these targets.
Pass `TyCtxt` to early diagostics decoration
This PR pass a `TyCtxt` to the early diagnostics decoration code so that diagnostics code that take advantage of (a very limited but still useful) `TyCtxt` in their note, help, suggestions, ...
This is particulary useful for #133221 which wants to get the crate name of a `DefId`, which is possible with `tcx.crate_name(...)`.
I highly recommend reviewing this PR commit by commit.
r? `@jieyouxu`
Add external macros specific diagnostics for check-cfg
This PR adds specific check-cfg diagnostics for unexpected cfg in external macros.
As well as hiding the some of the Cargo specific help/suggestions as they distraction for external macros and are generally not the right solution.
Follow-up to #132577
`@rustbot` label +L-unexpected_cfgs
r? compiler
For the `multivalue` and `reference-types` features this commit is
similar to #117457 in that it's stabilizing target features specific to
WebAssembly targets. The previous PR left out these two features because
they weren't expected to change much about compiled code so it was
unclear what the rationale was. It has [since been discovered][blog]
that `reference-types` can be useful as it changes the binary format of
the `call_indirect` instruction. Additionally [on Zulip][zulip] there's
a use case of detecting these features at compile time and generating a
compile error to better warn users about features not supported on
engines.
This PR then additionally adds the `tail-call` feature which corresponds
to the [tail-call] proposal to WebAssembly. This feature advanced to
"phase 4" in the WebAssembly CG awhile back and has been supported in
LLVM for quite some time now. Engines are finishing up implementations
or have already shipped implementations, so while this is a bit of a
late addition to Rust itself it reflects the current status of
WebAssembly's state of the feature.
A test has been added here not only for these features but other
WebAssembly features as well to showcase that they're usable without
feature gates in stable Rust.
[blog]: https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html
[zulip]: https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/wasm32.20reference-types.20.2F.20multivalue.20in.201.2E82-beta.20not.20enabled/near/473893987
[tail-call]: https://github.com/webassembly/tail-call
Add a new `wide-arithmetic` feature for WebAssembly
This commit adds a new rustc target feature named `wide-arithmetic` for WebAssembly targets. This corresponds to the [wide-arithmetic] proposal for WebAssembly which adds new instructions catered towards accelerating integer arithmetic larger than 64-bits. This proposal to WebAssembly is not standard yet so this new feature is flagged as an unstable target feature. Additionally Rust's LLVM version doesn't support this new feature yet since support will first be added in LLVM 20, so the feature filtering logic for LLVM is updated to handle this.
I'll also note that I'm not currently planning to add wasm-specific intrinsics to `std::arch::wasm32` at this time. The currently proposed instructions are all accessible through `i128` or `u128`-based operations which Rust already supports, so intrinsic shouldn't be necessary to get access to these new instructions.
[wide-arithmetic]: https://github.com/WebAssembly/wide-arithmetic