This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.
All of the modules in the standard library were just straight reexports of those
in libcore, so remove all the "macro modules" from the standard library and just
reexport what's in core directly.
Having the primitive and module docs derived from the same source
causes problems, primarily that they can't contain hyperlinks
cross-referencing each other.
This crates dedicated private modules in `std` to document the
primitive types, then for all primitives that have a corresponding
module, puts hyperlinks in moth the primitive docs and the module docs
cross-linking each other.
This should help clear up confusion when readers find themselves on
the wrong page.
This permits all coercions to be performed in casts, but adds lints to warn in those cases.
Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference.
[breaking change]
* Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed.
* The unused casts lint has gone.
* Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are:
- You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_`
- Casts do not influence inference of integer types. E.g., the following used to type check:
```
let x = 42;
let y = &x as *const u32;
```
Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information:
```
let x: u32 = 42;
let y = &x as *const u32;
```
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This commit adds stability markers for the APIs that have recently been
aligned with [numerics
reform](https://github.com/rust-lang/rfcs/pull/369). For APIs that were
changed as part of that reform, `#[unstable]` is used to reflect the
recency, but the APIs will become `#[stable]` in a follow-up pass.
In addition, a few aspects of the APIs not explicitly covered by the RFC
are marked here -- in particular, constants for floats.
This commit does not mark the `uint` or `int` modules as `#[stable]`,
given the ongoing debate out the names and roles of these types.
Due to some deprecation (see the RFC for details), this is a:
[breaking-change]
The following are unstable:
- core::int, i8, i16, i32, i64
- core::uint, u8, u16, u32, u64
- core::int::{BITS, BYTES, MIN, MAX}, etc.
- std::int, i8, i16, i32, i64
- std::uint, u8, u16, u32, u64
The following are experimental:
- std::from_str::FromStr and impls - may need to return Result instead of Option
- std::int::parse_bytes, etc. - ditto
- std::num::FromStrRadix and impls - ditto
- std::num::from_str_radix - ditto
The following are deprecated:
- std::num::ToStrRadix and imples - Wrapper around fmt::radix. Wrong name (Str vs String)
See https://github.com/rust-lang/rust/wiki/Meeting-API-review-2014-06-23#uint
This commit adds support in rustdoc to recognize the `#[doc(primitive = "foo")]`
attribute. This attribute indicates that the current module is the "owner" of
the primitive type `foo`. For rustdoc, this means that the doc-comment for the
module is the doc-comment for the primitive type, plus a signal to all
downstream crates that hyperlinks for primitive types will be directed at the
crate containing the `#[doc]` directive.
Additionally, rustdoc will favor crates closest to the one being documented
which "implements the primitive type". For example, documentation of libcore
links to libcore for primitive types, but documentation for libstd and beyond
all links to libstd for primitive types.
This change involves no compiler modifications, it is purely a rustdoc change.
The landing pages for the primitive types primarily serve to show a list of
implemented traits for the primitive type itself.
The primitive types documented includes both strings and slices in a semi-ad-hoc
way, but in a way that should provide at least somewhat meaningful
documentation.
Closes#14474
This mostly involved frobbing imports between realstd, realcore, and the core
being test. Some of the imports are a little counterintuitive, but it mainly
focuses around libcore's types not implementing Show while libstd's types
implement Show.
This implements all traits inside of core::num for all the primitive types,
removing all the functionality from libstd. The std modules reexport all of the
necessary items from the core modules.