Reduce formatting `width` and `precision` to 16 bits
This is part of https://github.com/rust-lang/rust/issues/99012
This is reduces the `width` and `precision` fields in format strings to 16 bits. They are currently full `usize`s, but it's a bit nonsensical that we need to support the case where someone wants to pad their value to eighteen quintillion spaces and/or have eighteen quintillion digits of precision.
By reducing these fields to 16 bit, we can reduce `FormattingOptions` to 64 bits (see https://github.com/rust-lang/rust/pull/136974) and improve the in memory representation of `format_args!()`. (See additional context below.)
This also fixes a bug where the width or precision is silently truncated when cross-compiling to a target with a smaller `usize`. By reducing the width and precision fields to the minimum guaranteed size of `usize`, 16 bits, this bug is eliminated.
This is a breaking change, but affects almost no existing code.
---
Details of this change:
There are three ways to set a width or precision today:
1. Directly a formatting string, e.g. `println!("{a:1234}")`
2. Indirectly in a formatting string, e.g. `println!("{a:width$}", width=1234)`
3. Through the unstable `FormattingOptions::width` method.
This PR:
- Adds a compiler error for 1. (`println!("{a:9999999}")` no longer compiles and gives a clear error.)
- Adds a runtime check for 2. (`println!("{a:width$}, width=9999999)` will panic.)
- Changes the signatures of the (unstable) `FormattingOptions::[get_]width` methods to use a `u16` instead.
---
Additional context for improving `FormattingOptions` and `fmt::Arguments`:
All the formatting flags and options are currently:
- The `+` flag (1 bit)
- The `-` flag (1 bit)
- The `#` flag (1 bit)
- The `0` flag (1 bit)
- The `x?` flag (1 bit)
- The `X?` flag (1 bit)
- The alignment (2 bits)
- The fill character (21 bits)
- Whether a width is specified (1 bit)
- Whether a precision is specified (1 bit)
- If used, the width (a full usize)
- If used, the precision (a full usize)
Everything except the last two can simply fit in a `u32` (those add up to 31 bits in total).
If we can accept a max width and precision of u16::MAX, we can make a `FormattingOptions` that is exactly 64 bits in size; the same size as a thin reference on most platforms.
If, additionally, we also limit the number of formatting arguments, we can also reduce the size of `fmt::Arguments` (that is, of a `format_args!()` expression).
Revert "Use workspace lints for crates in `compiler/` #138084"
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to consider options that avoids breaking downstream usages of cargo on distributed `rustc-src` artifacts, where such cargo invocations fail due to inability to inherit `lints` from workspace root manifest's `workspace.lints` (this is only valid for the source rust-lang/rust workspace, but not really the distributed `rustc-src` artifacts). The problem is that the `rustc-src` component doesn't include the root `Cargo.toml` manifest.
This breakage was reported in https://github.com/rust-lang/rust/issues/138304.
This reverts commit 48caf81484, reversing changes made to c6662879b2.
cc `@RalfJung`
r? `@nnethercote` (sorry, I didn't consider this being a thing 💀)
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to
consider options that avoids breaking downstream usages of cargo on
distributed `rustc-src` artifacts, where such cargo invocations fail due
to inability to inherit `lints` from workspace root manifest's
`workspace.lints` (this is only valid for the source rust-lang/rust
workspace, but not really the distributed `rustc-src` artifacts).
This breakage was reported in
<https://github.com/rust-lang/rust/issues/138304>.
This reverts commit 48caf81484, reversing
changes made to c6662879b2.
Rollup of 17 pull requests
Successful merges:
- #137827 (Add timestamp to unstable feature usage metrics)
- #138041 (bootstrap and compiletest: Use `size_of_val` from the prelude instead of imported)
- #138046 (trim channel value in `get_closest_merge_commit`)
- #138053 (Increase the max. custom try jobs requested to `20`)
- #138061 (triagebot: add a `compiler_leads` ad-hoc group)
- #138064 (Remove - from xtensa targets cpu names)
- #138075 (Use final path segment for diagnostic)
- #138078 (Reduce the noise of bootstrap changelog warnings in --dry-run mode)
- #138081 (Move `yield` expressions behind their own feature gate)
- #138090 (`librustdoc`: flatten nested ifs)
- #138092 (Re-add `DynSend` and `DynSync` impls for `TyCtxt`)
- #138094 (a small borrowck cleanup)
- #138098 (Stabilize feature `const_copy_from_slice`)
- #138103 (Git ignore citool's target directory)
- #138105 (Fix broken link to Miri intrinsics in documentation)
- #138108 (Mention me (WaffleLapkin) when changes to `rustc_codegen_ssa` occur)
- #138117 ([llvm/PassWrapper] use `size_t` when building arg strings)
r? `@ghost`
`@rustbot` modify labels: rollup
Provide more context on resolve error caused from incorrect RTN
When encountering a resolve E0575 error for an associated method (when a type was expected), see if it could have been an intended return type notation bound.
```
error[E0575]: expected associated type, found associated function `Trait::method`
--> $DIR/bad-inputs-and-output.rs:31:36
|
LL | fn foo_qualified<T: Trait>() where <T as Trait>::method(i32): Send {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^ not a associated type
|
help: you might have meant to use the return type notation syntax
|
LL - fn foo_qualified<T: Trait>() where <T as Trait>::method(i32): Send {}
LL + fn foo_qualified<T: Trait>() where T::method(..): Send {}
|
```
Built on top of #137824, only second commit is relevant for review.
r? ````````@compiler-errors````````
When `#![feature(min_generic_const_args)]` is enabled, we now lower all
const paths in generic arg position to `hir::ConstArgKind::Path`. We
then lower assoc const paths to `ty::ConstKind::Unevaluated` since we
can no longer use the anon const expression lowering machinery. In the
process of implementing this, I factored out `hir_ty_lowering` code that
is now shared between lowering assoc types and assoc consts.
This PR also introduces a `#[type_const]` attribute for trait assoc
consts that are allowed as const args. However, we still need to
implement code to check that assoc const definitions satisfy
`#[type_const]` if present (basically is it a const path or a
monomorphic anon const).
When encountering a resolve E0575 error for an associated method (when a type was expected), see if it could have been an intended return type notation bound.
```
error[E0575]: expected associated type, found associated function `Trait::method`
--> $DIR/bad-inputs-and-output.rs:31:36
|
LL | fn foo_qualified<T: Trait>() where <T as Trait>::method(i32): Send {}
| ^^^^^^^^^^^^^^^^^^^^^^^^^ not a associated type
|
help: you might have meant to use the return type notation syntax
|
LL - fn foo_qualified<T: Trait>() where <T as Trait>::method(i32): Send {}
LL + fn foo_qualified<T: Trait>() where T::method(..): Send {}
|
```
Implement `#[cfg]` in `where` clauses
This PR implements #115590, which supports `#[cfg]` attributes in `where` clauses.
The biggest change is, that it adds `AttrsVec` and `NodeId` to the `ast::WherePredicate` and `HirId` to the `hir::WherePredicate`.
Tweak incorrect ABI suggestion and make suggestion verbose
Provide a better suggestion message, and make the suggestion verbose.
```
error[E0703]: invalid ABI: found `riscv-interrupt`
--> $DIR/riscv-discoverability-guidance.rs:17:8
|
LL | extern "riscv-interrupt" fn isr() {}
| ^^^^^^^^^^^^^^^^^ invalid ABI
|
= note: invoke `rustc --print=calling-conventions` for a full list of supported calling conventions
help: there's a similarly named valid ABI `riscv-interrupt-m`
|
LL | extern "riscv-interrupt-m" fn isr() {}
| ++
```
unconditionally lower match arm even if it's unneeded for never pattern in match
fixes#137708
Lowering arm body is skipped when lowering match arm with never pattern, but we may need the HirId for DefId in the body in later passes. And then we got the ICE `No HirId for DefId`.
Fixes this by lowering the arm body even if it's unneeded for never pattern in match, so that we can generate HirId and use it then.
r? `@compiler-errors`
Provide a better suggestion message, and make the suggestion verbose.
```
error[E0703]: invalid ABI: found `riscv-interrupt`
--> $DIR/riscv-discoverability-guidance.rs:17:8
|
LL | extern "riscv-interrupt" fn isr() {}
| ^^^^^^^^^^^^^^^^^ invalid ABI
|
= note: invoke `rustc --print=calling-conventions` for a full list of supported calling conventions
help: there's a similarly named valid ABI `"riscv-interrupt-m"`
|
LL | extern "riscv-interrupt-m" fn isr() {}
| ++
```
Greatly simplify lifetime captures in edition 2024
Remove most of the `+ Captures` and `+ '_` from the compiler, since they are now unnecessary with the new edition 2021 lifetime capture rules. Use some `+ 'tcx` and `+ 'static` rather than being overly verbose with precise capturing syntax.
The end goal is to eliminate `Map` altogether.
I added a `hir_` prefix to all of them, that seemed simplest. The
exceptions are `module_items` which became `hir_module_free_items` because
there was already a `hir_module_items`, and `items` which became
`hir_free_items` for consistency with `hir_module_free_items`.
compiler: give `ExternAbi` truly stable `Hash` and `Ord`
Currently, `ExternAbi` has a bunch of code to handle the reality that, as an enum, adding more variants to it will risk it hashing differently. It forces all of those variants to be added in a fixed order, except this means that the order of the variants doesn't correspond to any logical order except "historical accident". This is all to avoid having to rebless two tests. Perhaps there were more, once upon a time? But then we invented normalization in our test suite to handle exactly this sort of issue in a more general way.
There are two options here:
- Get rid of all the logical overhead and shrug, embracing blessing a couple of tests sometimes
- Change `ExternAbi` to have an ordering and hash that doesn't depend on the number of variants
As `ExternAbi` is essentially a strongly-typed string, and thus no two strings can be identical, this implements the second of the two by hand-implementing `Ord` and `Hash` to make the hashing and comparison based on the string! This will diff the current hashes, but they will diff no more after this.
Add a TyPat in the AST to reuse the generic arg lowering logic
This simplifies ast lowering significantly with little cost to the pattern types parser.
Also fixes any problems we've had with generic args (well, pushes any problems onto the `generic_const_exprs` feature gate)
follow-up to https://github.com/rust-lang/rust/pull/136284#discussion_r1939292367
r? ``@BoxyUwU``
These were a way to ensure hashes were stable over time for ExternAbi,
but simply hashing the strings is more stable in the face of changes.
As a result, we can do away with them.
Directly map each ExternAbi variant to its string and back again.
This has a few advantages:
- By making the ABIs compare equal to their strings, we can easily
lexicographically sort them and use that sorted slice at runtime.
- We no longer need a workaround to make sure the hashes remain stable,
as they already naturally are (by being the hashes of unique strings).
- The compiler can carry around less &str wide pointers
show supported register classes in error message
a simple diagnostic change that shows the supported register classes when an invalid one is found.
This information can be hard to find (especially for unstable targets), and this message now gives at least something to try or search for. I've followed the pattern for invalid clobber ABIs.
`@rustbot` label +A-inline-assembly