AsyncDrop trait without sync Drop generates an error
When type implements `AsyncDrop` trait, it must also implement sync `Drop` trait to be used in sync context and unwinds.
This PR adds error generation in such a case.
Fixes: rust-lang/rust#140696
use `#[align]` attribute for `fn_align`
Tracking issue: https://github.com/rust-lang/rust/issues/82232https://github.com/rust-lang/rfcs/pull/3806 decides to add the `#[align]` attribute for alignment of various items. Right now it's used for functions with `fn_align`, in the future it will get more uses (statics, struct fields, etc.)
(the RFC finishes FCP today)
r? `@ghost`
Don't build `ParamEnv` and do trait solving in `ItemCtxt`s when lowering IATs
Fixesrust-lang/rust#108491Fixesrust-lang/rust#125879
This was due to updating inhabited predicate stuff which I had to do to make constructing ADTs with IATs in fields not ICE
Fixesrust-lang/rust#136678 (but no test added, I don't rly care about weird IAT edge cases under GCE)
Fixesrust-lang/rust#138131
Avoids doing "fully correct" candidate selection for IATs during hir ty lowering when in item signatures as it almost always leads to a query cycle from trying to build a `ParamEnv`. I replaced it with a use `DeepRejectCtxt` which should be able to handle this kind of conservative "could these types unify" while in a context where we don't want to do type equality.
This is a relatively simple scheme and should be forwards compatible with doing something more complex/powerful.
I'm not really sure how this interacts with rust-lang/rust#126651, though I'm also not really sure its super important to support projecting IATs from IAT self types given we don't even support `T::Assoc::Other` for trait-associated types so didn't give much thought to how this might fit in with that.
r? `@compiler-errors`
cc `@fmease`
Rollup of 6 pull requests
Successful merges:
- rust-lang/rust#135656 (Add `-Z hint-mostly-unused` to tell rustc that most of a crate will go unused)
- rust-lang/rust#138237 (Get rid of `EscapeDebugInner`.)
- rust-lang/rust#141614 (lint direct use of rustc_type_ir )
- rust-lang/rust#142123 (Implement initial support for timing sections (`--json=timings`))
- rust-lang/rust#142377 (Try unremapping compiler sources)
- rust-lang/rust#142674 (remove duplicate crash test)
r? `@ghost`
`@rustbot` modify labels: rollup
Implement initial support for timing sections (`--json=timings`)
This PR implements initial support for emitting high-level compilation section timings. The idea is to provide a very lightweight way of emitting durations of various compilation sections (frontend, backend, linker, or on a more granular level macro expansion, typeck, borrowck, etc.). The ultimate goal is to stabilize this output (in some form), make Cargo pass `--json=timings` and then display this information in the HTML output of `cargo build --timings`, to make it easier to quickly profile "what takes so long" during the compilation of a Cargo project. I would personally also like if Cargo printed some of this information in the interactive `cargo build` output, but the `build --timings` use-case is the main one.
Now, this information is already available with several other sources, but I don't think that we can just use them as they are, which is why I proposed a new way of outputting this data (`--json=timings`):
- This data is available under `-Zself-profile`, but that is very expensive and forever unstable. It's just a too big of a hammer to tell us the duration it took to run the linker.
- It could also be extracted with `-Ztime-passes`. That is pretty much "for free" in terms of performance, and it can be emitted in a structured form to JSON via `-Ztime-passes-format=json`. I guess that one alternative might be to stabilize this flag in some form, but that form might just be `--json=timings`? I guess what we could do in theory is take the already emitted time passes and reuse them for `--json=timings`. Happy to hear suggestions!
I'm sending this PR mostly for a vibeck, to see if the way I implemented it is passable. There are some things to figure out:
- How do we represent the sections? Originally I wanted to output `{ section, duration }`, but then I realized that it might be more useful to actually emit `start` and `end` events. Both because it enables to see the output incrementally (in case compilation takes a long time and you read the outputs directly, or Cargo decides to show this data in `cargo build` some day in the future), and because it makes it simpler to represent hierarchy (see below). The timestamps currently emit microseconds elapsed from a predetermined point in time (~start of rustc), but otherwise they are fully opaque, and should be only ever used to calculate the duration using `end - start`. We could also precompute the duration for the user in the `end` event, but that would require doing more work in rustc, which I would ideally like to avoid :P
- Do we want to have some form of hierarchy? I think that it would be nice to show some more granular sections rather than just frontend/backend/linker (e.g. macro expansion, typeck and borrowck as a part of the frontend). But for that we would need some way of representing hierarchy. A simple way would be something like `{ parent: "frontend" }`, but I realized that with start/end timestamps we get the hierarchy "for free", only the client will need to reconstruct it from the order of start/end events (e.g. `start A`, `start B` means that `B` is a child of `A`).
- What exactly do we want to stabilize? This is probably a question for later. I think that we should definitely stabilize the format of the emitted JSON objects, and *maybe* some specific section names (but we should also make it clear that they can be missing, e.g. you don't link everytime you invoke `rustc`).
The PR be tested e.g. with `rustc +stage1 src/main.rs --json=timings --error-format=json -Zunstable-options` on a crate without dependencies (it is not easy to use `--json` with stock Cargo, because it also passes this flag to `rustc`, so this will later need Cargo integration to be usable with it).
Zulip discussions: [#t-compiler > Outputting time spent in various compiler sections](https://rust-lang.zulipchat.com/#narrow/channel/131828-t-compiler/topic/Outputting.20time.20spent.20in.20various.20compiler.20sections/with/518850162)
MCP: https://github.com/rust-lang/compiler-team/issues/873
r? ``@nnethercote``
lint direct use of rustc_type_ir
cc rust-lang/rust#138449
As previously discussed with `@lcnr,` it is a lint to prevent direct use of rustc_type_ir, except for some internal crates (like next_trait_solver or rustc_middle for example).
Add `-Z hint-mostly-unused` to tell rustc that most of a crate will go unused
This hint allows the compiler to optimize its operation based on this assumption, in order to compile faster. This is a hint, and does not guarantee any particular behavior.
This option can substantially speed up compilation if applied to a large dependency where the majority of the dependency does not get used. This flag may slow down compilation in other cases.
Currently, this option makes the compiler defer as much code generation as possible from functions in the crate, until later crates invoke those functions. Functions that never get invoked will never have code generated for them. For instance, if a crate provides thousands of functions, but only a few of them will get called, this flag will result in the compiler only doing code generation for the called functions. (This uses the same mechanisms as cross-crate inlining of functions.) This does not affect `extern` functions, or functions marked as `#[inline(never)]`.
This option has already existed in nightly as `-Zcross-crate-inline-threshold=always` for some time, and has gotten testing in that form. However, this option is still unstable, to give an opportunity for wider testing in this form.
Some performance numbers, based on a crate with many dependencies having just *one* large dependency set to `-Z hint-mostly-unused` (using Cargo's `profile-rustflags` option):
A release build went from 4m07s to 2m04s.
A non-release build went from 2m26s to 1m28s.
CodeGen: rework Aggregate implemention for rvalue_creates_operand cases
A non-trivial refactor pulled out from rust-lang/rust#138759
r? workingjubilee
The previous implementation I'd written here based on `index_by_increasing_offset` is complicated to follow and difficult to extend to non-structs.
This changes the implementation, without actually changing any codegen (thus no test changes either), to be more like the existing `extract_field` (<2b0274c71d/compiler/rustc_codegen_ssa/src/mir/operand.rs (L345-L425)>) in that it allows setting a particular field directly.
Notably I've found this one much easier to get right, in particular because having the `OperandRef<Result<V, Scalar>>` gives a really useful thing to include in ICE messages if something did happen to go wrong.
This commit adds a lint to prevent the use of rustc_type_ir in random
compiler crates, except for type system internals traits, which are
explicitly allowed. Moreover, this fixes diagnostic_items() to include
the CRATE_OWNER_ID, otherwise rustc_diagnostic_item attribute is ignored
on the crate root.
Change __rust_no_alloc_shim_is_unstable to be a function
This fixes a long sequence of issues:
1. A customer reported that building for Arm64EC was broken: #138541
2. This was caused by a bug in my original implementation of Arm64EC support, namely that only functions on Arm64EC need to be decorated with `#` but Rust was decorating statics as well.
3. Once I corrected Rust to only decorate functions, I started linking failures where the linker couldn't find statics exported by dylib dependencies. This was caused by the compiler not marking exported statics in the generated DEF file with `DATA`, thus they were being exported as functions not data.
4. Once I corrected the way that the DEF files were being emitted, the linker started failing saying that it couldn't find `__rust_no_alloc_shim_is_unstable`. This is because the MSVC linker requires the declarations of statics imported from other dylibs to be marked with `dllimport` (whereas it will happily link to functions imported from other dylibs whether they are marked `dllimport` or not).
5. I then made a change to ensure that `__rust_no_alloc_shim_is_unstable` was marked as `dllimport`, but the MSVC linker started emitting warnings that `__rust_no_alloc_shim_is_unstable` was marked as `dllimport` but was declared in an obj file. This is a harmless warning which is a performance hint: anything that's marked `dllimport` must be indirected via an `__imp` symbol so I added a linker arg in the target to suppress the warning.
6. A customer then reported a similar warning when using `lld-link` (<https://github.com/rust-lang/rust/pull/140176#issuecomment-2872448443>). I don't think it was an implementation difference between the two linkers but rather that, depending on the obj that the declaration versus uses of `__rust_no_alloc_shim_is_unstable` landed in we would get different warnings, so I suppressed that warning as well: #140954.
7. Another customer reported that they weren't using the Rust compiler to invoke the linker, thus these warnings were breaking their build: <https://github.com/rust-lang/rust/pull/140176#issuecomment-2881867433>. At that point, my original change was reverted (#141024) leaving Arm64EC broken yet again.
Taking a step back, a lot of these linker issues arise from the fact that `__rust_no_alloc_shim_is_unstable` is marked as `extern "Rust"` in the standard library and, therefore, assumed to be a foreign item from a different crate BUT the Rust compiler may choose to generate it either in the current crate, some other crate that will be statically linked in OR some other crate that will by dynamically imported.
Worse yet, it is impossible while building a given crate to know if `__rust_no_alloc_shim_is_unstable` will statically linked or dynamically imported: it might be that one of its dependent crates is the one with an allocator kind set and thus that crate (which is compiled later) will decide depending if it has any dylib dependencies or not to import `__rust_no_alloc_shim_is_unstable` or generate it. Thus, there is no way to know if the declaration of `__rust_no_alloc_shim_is_unstable` should be marked with `dllimport` or not.
There is a simple fix for all this: there is no reason `__rust_no_alloc_shim_is_unstable` must be a static. It needs to be some symbol that must be linked in; thus, it could easily be a function instead. As a function, there is no need to mark it as `dllimport` when dynamically imported which avoids the entire mess above.
There may be a perf hit for changing the `volatile load` to be a `tail call`, so I'm happy to change that part back (although I question what the codegen of a `volatile load` would look like, and if the backend is going to try to use load-acquire semantics).
Build with this change applied BEFORE #140176 was reverted to demonstrate that there are no linking issues with either MSVC or MinGW: <https://github.com/rust-lang/rust/actions/runs/15078657205>
Incidentally, I fixed `tests/run-make/no-alloc-shim` to work with MSVC as I needed it to be able to test locally (FYI for #128602)
r? `@bjorn3`
cc `@jieyouxu`
Rewrite `inline` attribute parser to use new infrastructure and improve diagnostics for all parsed attributes
r? `@oli-obk`
This PR:
- creates a new parser for inline attributes
- creates consistent error messages and error codes between attribute parsers; inline and others
- as such changes a few error messages for other attributes to be (in my eyes) much more consistent
- tests ast-lowering lints introduced by rust-lang/rust#138164 since this is now useful for the first time
- Coalesce some useless error codes
Builds on top of rust-lang/rust#138164Closesrust-lang/rust#137950
Another refactor pulled out from 138759
The previous implementation I'd written here based on `index_by_increasing_offset` is complicated to follow and difficult to extend to non-structs.
This changes the implementation, without actually changing any codegen (thus no test changes either), to be more like the existing `extract_field` (<2b0274c71d/compiler/rustc_codegen_ssa/src/mir/operand.rs (L345-L425)>) in that it allows setting a particular field directly.
Notably I've found this one much easier to get right, in particular because having the `OperandRef<Result<V, Scalar>>` gives a really useful thing to include in ICE messages if something did happen to go wrong.
Temporarily add back -Zwasm-c-abi=spec
This allows a more gradual transition path for projects that need to use use the spec-complaint C ABI both with older and newer rustc versions.
Refresh module-level docs for `rustc_target::spec`
We have long since gone on a curveball from the flexible-target-specification RFC by introducing stability and soundness promises to the language and compiler which we often struggle with extending to target-specific implementation details. Indeed, we often *literally cannot*. We also have modified the search algorithm details. Update the comments for `rustc_target::spec` considerably.
Sized Hierarchy: Part I
This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract.
These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler.
RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows:
- `?Sized` is rewritten as `MetaSized`
- `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already.
There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled.
Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately).
It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output.
**Notes:**
- Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged.
- This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together.
- Each commit has a short description describing its purpose.
- This patch is large but it's primarily in the test suite.
- I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor.
- `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway.
- `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491)
- FCP in https://github.com/rust-lang/rust/pull/137944#issuecomment-2912207485Fixesrust-lang/rust#79409.
r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Set elf e_flags on ppc64 targets according to abi
(This PR contains the non user-facing changes of https://github.com/rust-lang/rust/pull/142321)
Fixes https://github.com/rust-lang/rust/issues/85589 by making sure that ld.lld errors out instead of generating a broken binary.
Basically the problem is that ld.lld assumes that all ppc64 object files with e_flags=0 are object files which use the ELFv2 ABI (this here is the check https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/PPC64.cpp#L639).
This pull request sets the correct e_flags to indicate the used ABI so ld.lld errors out when encountering ELFv1 ABI files instead of generating a broken binary.
For example compare code generation for this program (file name ``min.rs``):
```rust
#![feature(no_core, lang_items, repr_simd)]
#![crate_type = "bin"]
#![no_core]
#![no_main]
#[lang = "sized"]
trait Sized {}
#[lang = "copy"]
trait Copy {}
#[lang = "panic_cannot_unwind"]
pub fn panic() -> ! {
loop {}
}
pub fn my_rad_unmangled_function() {
loop {}
}
pub fn my_rad_function() {
loop {}
}
#[no_mangle]
pub fn _start() {
my_rad_unmangled_function();
my_rad_function();
}
```
Compile with ``rustc --target=powerpc64-unknown-linux-gnu -C linker=ld.lld -C relocation-model=static min.rs``
Before change:
```
$ llvm-objdump -d min
Disassembly of section .text:
000000001001030c <.text>:
...
10010334: 7c 08 02 a6 mflr 0
10010338: f8 21 ff 91 stdu 1, -112(1)
1001033c: f8 01 00 80 std 0, 128(1)
10010340: 48 02 00 39 bl 0x10030378 <_ZN3min25my_rad_unmangled_function17h7471c49af58039f5E>
10010344: 60 00 00 00 nop
10010348: 48 02 00 49 bl 0x10030390 <_ZN3min15my_rad_function17h37112b8fd1008c9bE>
1001034c: 60 00 00 00 nop
...
```
The branch instructions ``bl 0x10030378`` and ``bl 0x10030390`` are jumping into the ``.opd`` section which is data. That is a broken binary (because fixing those branches is the task of the linker).
After change:
```
error: linking with `ld.lld` failed: exit status: 1
|
= note: "ld.lld" "/tmp/rustcNYKZCS/symbols.o" "<1 object files omitted>" "--as-needed" "-L" "/tmp/rustcNYKZCS/raw-dylibs" "-Bdynamic" "--eh-frame-hdr" "-z" "noexecstack" "-L" "<sysroot>/lib/rustlib/powerpc64-unknown-linux-gnu/lib" "-o" "min" "--gc-sections" "-z" "relro" "-z" "now"
= note: some arguments are omitted. use `--verbose` to show all linker arguments
= note: ld.lld: error: /tmp/rustcNYKZCS/symbols.o: ABI version 1 is not supported
```
Which is correct because ld.lld doesn't support ELFv1 ABI.
Revert overeager warning for misuse of `--print native-static-libs`
In a PR to emit warnings on misuse of `--print native-static-libs`, we did not consider the matter of composing parts of build systems. If you are not directly invoking rustc, it can be difficult to know when you will in fact compile a staticlib, so making sure uses `--print native-static-lib` correctly can be just a nuisance.
Next cycle we can reland a slightly more narrowly focused variant or one that focuses on `--emit` instead of `--print native-static-libs`. But in its current state, I am not sure the warning is very useful.
Make sure to propagate result from `visit_expr_fields`
We weren't propagating the `ControlFlow::Break` out of a struct field, which means that the solution implemented in rust-lang/rust#130443 didn't work for nested fields.
Fixesrust-lang/rust#142525.
Reject union default field values
Fixesrust-lang/rust#142555.
The [`default_field_values` RFC][rfc] does not specify that default field values may be used on `union`s, and it's not clear how default field values may be used with `union`s without an design extension to the RFC. So, for now, reject trying to use default field values with `union`s.
### Review notes
- The first commit adds the `union` with default field values test case to `tests/ui/structs/default-field-values/failures.rs`, where `union`s with default field values are currently accepted.
- The second commit rejects trying to supply default field values to `union` definitions.
- When `default_field_values` feature gate is disabled, we show the feature gate error when the user tries to write `union`s with default field values. When the feature gate is enabled, we reject this usage with
> unions cannot have default field values
``@rustbot`` label: +F-default_field_values
[rfc]: https://rust-lang.github.io/rfcs/3681-default-field-values.html
Manually invalidate caches in SimplifyCfg.
The current `SimplifyCfg` pass unconditionally invalidates CFG caches. This is unfortunate if there are no modifications that require this invalidation.