In the current documentation, it's not specified that when creating
a Command, the .exe extension can be omitted for Windows executables.
However, for other types of executable files like .bat or .cmd,
the complete filename including the extension must be provided.
I encountered it by noticing that `Command::new("wt").spawn().unwrap()`
succeeds on my machine while `Command::new("code").spawn().unwrap()`
panics. Turns out VS Code's entrypoint is .cmd file.
`resolve_exe` method mentions this behaviour in a comment[1], but it
makes sense to mention it at more visible place.
I've added this clarification to the documentation, which should
make it more accurate and helpful for Rust developers
working on the Windows platform.
[1] e7fda447e7/library/std/src/sys/windows/process.rs (L425)
Like the other CStr and CString error types, make a re-export for
std::ffi::FromBytesUntilNulError.
This seems to have slipped through the cracks in the
cstr_from_bytes_until_nul implementation and core_c_str migration.
Tracking Issue: #95027
Adjustments for RustyHermit
The interface between `libstd` and the OS changed and some changes are not correctly merged for RustHermit. For instance, the crate `hermit_abi` isn't defined as public, although it provided the socket interface for the application.
In addition, the support of thread::available_parallelism is realized. It returns the number of available processors.
Add `Read`, `Write` and `Seek` impls for `Arc<File>` where appropriate
If `&T` implements these traits, `Arc<T>` has no reason not to do so
either. This is useful for operating system handles like `File` or
`TcpStream` which don't need a mutable reference to implement these
traits.
CC #53835.
CC #94744.
move pal cfgs in f32 and f64 to sys
I'd like to push forward on `sys` being a separate crate. To start with, most of these PAL exception cases are very simple little bits of code like this, so I thought I would try tidying them up.
Revert the lexing of `c"…"` string literals
Fixes \[after beta-backport\] #113235.
Further progress is tracked in #113333.
This PR *manually* reverts parts of #108801 (since a git-revert would've been too coarse-grained & messy)
and git-reverts #111647.
CC `@fee1-dead` (#108801) `@klensy` (#111647)
r? `@compiler-errors`
`@rustbot` label F-c_str_literals beta-nominated
`Path::with_extension` used to reallocate (and copy) paths twice per
call, now it does it once, by checking the size of the previous and new
extensions it's possible to call `PathBuf::with_capacity` and pass the
exact capacity it takes.
Also reduce the memory consumption of the path returned from
`Path::with_extension` by using exact capacity instead of using
amortized exponential growth.
Move windows-sys arm32 shim to c.rs
This moves the arm32 shim in to c.rs instead of appending to the generated file itself.
This makes it simpler to change these workarounds if/when needed. The downside is we need to exclude a couple of functions from being generated (see the comment). A metadata solution could help here but they'll be easy enough to add back if that happens.
Remove unnecessary `path` attribute
Follow up to #111401. I missed this at the time but it should now be totally unnecessary since the other include was removed.
r? `@workingjubilee`
Implement `Sync` for `mpsc::Sender`
`mpsc::Sender` is currently `!Sync` because the previous implementation contained an optimization where the channel started out as single-producer and was dynamically upgraded on the first clone, which relied on a unique reference to the sender. This optimization is one of the main reasons the old implementation was so complex and was removed in #93563. `mpsc::Sender` can now soundly implement `Sync`.
Note for any potential confusion, this chance does *not* add MPMC behavior. This only affects the already `Send + Clone` *sender*, not *receiver*.
It's technically possible to rely on the `!Sync` behavior in the same way as a `PhantomData<*mut T>`, but that seems very unlikely in practice. Either way, this change is insta-stable and needs an FCP.
`@rustbot` label +T-libs-api -T-libs
If `&T` implements these traits, `Arc<T>` has no reason not to do so
either. This is useful for operating system handles like `File` or
`TcpStream` which don't need a mutable reference to implement these
traits.
CC #53835.
CC #94744.
Document memory orderings of `thread::{park, unpark}`
Document `thread::park/unpark` as having acquire/release synchronization. Without that guarantee, even the example in the documentation can deadlock:
```rust
let flag = Arc::new(AtomicBool::new(false));
let t2 = thread::spawn(move || {
while !flag.load(Ordering::Acquire) {
thread::park();
}
});
flag.store(true, Ordering::Release);
t2.thread().unpark();
// t1: flag.store(true)
// t1: thread.unpark()
// t2: flag.load() == false
// t2 now parks, is immediately unblocked but never
// acquires the flag, and thus spins forever
```
Multiple calls to `unpark` should also maintain a release sequence to make sure operations released by previous `unpark`s are not lost:
```rust
let a = Arc::new(AtomicBool::new(false));
let b = Arc::new(AtomicBool::new(false));
let t2 = thread::spawn(move || {
while !a.load(Ordering::Acquire) || !b.load(Ordering::Acquire) {
thread::park();
}
});
thread::spawn(move || {
a.store(true, Ordering::Release);
t2.thread().unpark();
});
b.store(true, Ordering::Release);
t2.thread().unpark();
// t1: a.store(true)
// t1: t2.unpark()
// t3: b.store(true)
// t3: t2.unpark()
// t2 now parks, is immediately unblocked but never
// acquires the store of `a`, only the store of `b` which
// was released by the most recent unpark, and thus spins forever
```
This is of course a contrived example, but is reasonable to rely upon in real code.
Note that all implementations of park/unpark already comply with the rules, it's just undocumented.