Since 63793 the discriminant_value intrinsic is safe to call. Remove
unnecessary unsafe block around calls to this intrinsic in built-in
derive macros.
Provide structured suggestions when finding structs when expecting a trait
When finding an ADT in a trait object definition provide some solutions. Fix#45817.
Given `<Param as Trait>::Assoc: Ty` suggest `Param: Trait<Assoc = Ty>`. Fix#75829.
Allow generic parameters in intra-doc links
Fixes#62834.
---
The contents of the generics will be mostly ignored (except for warning
if fully-qualified syntax is used, which is currently unsupported in
intra-doc links - see issue #74563).
* Allow links like `Vec<T>`, `Result<T, E>`, and `Option<Box<T>>`
* Allow links like `Vec::<T>::new()`
* Warn on
* Unbalanced angle brackets (e.g. `Vec<T` or `Vec<T>>`)
* Missing type to apply generics to (`<T>` or `<Box<T>>`)
* Use of fully-qualified syntax (`<Vec as IntoIterator>::into_iter`)
* Invalid path separator (`Vec:<T>:new`)
* Too many angle brackets (`Vec<<T>>`)
* Empty angle brackets (`Vec<>`)
Note that this implementation *does* allow some constructs that aren't
valid in the actual Rust syntax, for example `Box::<T>new()`. That may
not be supported in rustdoc in the future; it is an implementation
detail.
They were not formatted correctly, so rustdoc was interpreting some
parts as code. Also cleaned up some other query docs that weren't
causing issues, but were formatted incorrectly.
Add TraitDef::find_map_relevant_impl
This PR adds a method to `TraitDef`. While `for_each_relevant_impl` covers the general use case, sometimes it's not necessary to scan through all the relevant implementations, so this PR introduces a new method, `find_map_relevant_impl`. I've also replaced the `for_each_relevant_impl` calls where possible.
I'm hoping for a tiny bit of efficiency gain here and there.
Cleanup of `eat_while()` in lexer
The size of a lexer Token was inflated by the largest `TokenKind` variants `LiteralKind::RawStr` and `RawByteStr`, because
* it used `usize` although `u32` is sufficient in rustc, since crates must be smaller than 4GB,
* and it stored the 20 bytes big `RawStrError` enum for error reporting.
If a raw string is invalid, it now needs to be reparsed to get the `RawStrError` data, but that is a very cold code path.
Technically this breaks other tools that depend on rustc_lexer because they are now also restricted to a max file size of 4GB. But this shouldn't matter in practice, and rustc_lexer isn't stable anyway.
Can I also get a perf run?
Edit: This makes no difference in performance. The PR now only contains a small cleanup.
Add asm! support for mips64
- [x] Updated `src/doc/unstable-book/src/library-features/asm.md`.
- [ ] No vector type support. I don't know much about those types.
cc #76839
rustc_target: Refactor away `TargetResult`
Follow-up to https://github.com/rust-lang/rust/pull/77202.
Construction of a built-in target is always infallible now, so `TargetResult` is no longer necessary.
The second commit contains some further cleanup based on built-in target construction being infallible.
The cleanup blocks often contain read of discriminants. Teach
RemoveNoopLandingPads to recognize them as no-ops to remove
additional no-op landing pads.
Implementation of RFC2867
https://github.com/rust-lang/rust/issues/74727
So I've started work on this, I think my next steps are to make use of the `instruction_set` value in the llvm codegen but this is the point where I begin to get a bit lost. I'm looking at the code but it would be nice to have some guidance on what I've currently done and what I'm doing next 😄