Add `[Option<T>; N]::transpose`
This PR as a new unstable libs API, `[Option<T>; N]::transpose`, which permits going from `[Option<T>; N]` to `Option<[T; N]>`.
This new API doesn't have an ACP as it was directly asked by T-libs-api in https://github.com/rust-lang/rust/issues/97601#issuecomment-2372109119:
> [..] but it'd be trivial to provide a helper method `.transpose()` that turns array-of-Option into Option-of-array (**and we think that method should exist**; it already does for array-of-MaybeUninit).
r? libs
Update Unicode escapes in `/library/core/src/char/methods.rs`
`char::MAX` is inconsistent on how Unicode escapes should be formatted. This PR resolves that.
ptr::add/sub: do not claim equivalence with `offset(c as isize)`
In https://github.com/rust-lang/rust/pull/110837, the `offset` intrinsic got changed to also allow a `usize` offset parameter. The intention is that this will do an unsigned multiplication with the size, and we have UB if that overflows -- and we also have UB if the result is larger than `usize::MAX`, i.e., if a subsequent cast to `isize` would wrap. ~~The LLVM backend sets some attributes accordingly.~~
This updates the docs for `add`/`sub` to match that intent, in preparation for adjusting codegen to exploit this UB. We use this opportunity to clarify what the exact requirements are: we compute the offset using mathematical multiplication (so it's no problem to have an `isize * usize` multiplication, we just multiply integers), and the result must fit in an `isize`.
Cc `@rust-lang/opsem` `@nikic`
https://github.com/rust-lang/rust/pull/130239 updates Miri to detect this UB.
`sub` still has some cases of UB not reflected in the underlying intrinsic semantics (and Miri does not catch): when we subtract `usize::MAX`, then after casting to `isize` that's just `-1` so we end up adding one unit without noticing any UB, but actually the offset we gave does not fit in an `isize`. Miri will currently still not complain for such cases:
```rust
fn main() {
let x = &[0i32; 2];
let x = x.as_ptr();
// This should be UB, we are subtracting way too much.
unsafe { x.sub(usize::MAX).read() };
}
```
However, the LLVM IR we generate here also is UB-free. This is "just" library UB but not language UB.
Cc `@saethlin;` might be worth adding precondition checks against overflow on `offset`/`add`/`sub`?
Fixes https://github.com/rust-lang/rust/issues/130211
make ptr metadata functions callable from stable const fn
So far this was done with a bunch of `rustc_allow_const_fn_unstable`. But those should be the exception, not the norm. If we are confident we can expose the ptr metadata APIs *indirectly* in stable const fn, we should just mark them as `rustc_const_stable`. And we better be confident we can do that since it's already been done a while ago. ;)
In particular this marks two intrinsics as const-stable: `aggregate_raw_ptr`, `ptr_metadata`. This should be uncontroversial, they are trivial to implement in the interpreter.
Cc `@rust-lang/wg-const-eval` `@rust-lang/lang`
This commit is a followup to https://github.com/rust-lang/rust/pull/124032. It
replaces the tests that test the various sort functions in the standard library
with a test-suite developed as part of
https://github.com/Voultapher/sort-research-rs. The current tests suffer a
couple of problems:
- They don't cover important real world patterns that the implementations take
advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety
property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly
tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven
coverage.
- The randomness is not repeatable, as it
relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before
https://github.com/rust-lang/rust/pull/124032, but they are intensified by it.
One thing that is new and requires additional testing, is that the new sort
implementations specialize based on type properties. For example `Freeze` and
non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions,
greatly improving test coverage. It side-steps the miri issue by preferring
sampled approaches. For example the test that checks if after a panic the set of
elements is still the original one, doesn't do so for every single possible
panic opportunity but rather it picks one at random, and performs this test
across a range of input length, which varies the panic point across them. This
allows regular execution to easily test inputs of length 10k, and miri execution
up to 100 which covers significantly more code. The randomness used is tied to a
fixed - but random per process execution - seed. This allows for fully
repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for
`sort_unstable` and alloc unit tests for `sort`. The new test-suite was
developed to be a purely black-box approach, which makes integration testing the
better place, because it can't accidentally rely on internal access. Because
unwinding support is required the tests can't be in core, even if the
implementation is, so they are now part of the alloc integration tests. Are
there architectures that can only build and test core and not alloc? If so, do
such platforms require sort testing? For what it's worth the current
implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which
is big endian.
The test-suite also contains tests for properties that were and are given by the
current and previous implementations, and likely relied upon by users but
weren't tested. For example `self_cmp` tests that the two parameters `a` and `b`
passed into the comparison function are never references to the same object,
which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a
deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since
unix epoch / 10, which given timestamps in the CI should be reasonably easy to
reproduce, but also allows fuzzer like space exploration.
stabilize const_cell_into_inner
This const-stabilizes
- `UnsafeCell::into_inner`
- `Cell::into_inner`
- `RefCell::into_inner`
- `OnceCell::into_inner`
`@rust-lang/wg-const-eval` this uses `rustc_allow_const_fn_unstable(const_precise_live_drops)`, so we'd be comitting to always finding *some* way to accept this code. IMO that's fine -- what these functions do is to move out the only field of a struct, and that struct has no destructor itself. The field's destructor does not get run as it gets returned to the caller.
`@rust-lang/libs-api` this was FCP'd already [years ago](https://github.com/rust-lang/rust/issues/78729#issuecomment-811409860), except that `OnceCell::into_inner` was added to the same feature gate since then (Cc `@tgross35).` Does that mean we have to re-run the FCP? If yes, I'd honestly prefer to move `OnceCell` into its own feature gate to not risk missing the next release. (That's why it's not great to add new functions to an already FCP'd feature gate.) OTOH if this needs an FCP either way since the previous FCP was so long ago, then we might as well do it all at once.
Improve Ord docs
- Makes wording more clear and re-structures some sections that can be overwhelming for someone not already in the know.
- Adds examples of how *not* to implement Ord, inspired by various anti-patterns found in real world code.
Many of the wording changes are inspired directly by my personal experience of being confused by the `Ord` docs and seeing other people get it wrong as well, especially lately having looked at a number of `Ord` implementations as part of #128899.
Created with help by `@orlp.`
r? `@workingjubilee`
Update `catch_unwind` doc comments for `c_unwind`
Updates `catch_unwind` doc comments to indicate that catching a foreign exception _will no longer_ be UB. Instead, there are two possible behaviors, though it is not specified which one an implementation will choose.
Nominated for t-lang to confirm that they are okay with making such a promise based on t-opsem FCP, or whether they would like to be included in the FCP.
Related: https://github.com/rust-lang/rust/issues/74990, https://github.com/rust-lang/rust/issues/115285, https://github.com/rust-lang/reference/pull/1226
- Makes wording more clear and re-structures some
sections that can be overwhelming for some not
already in the know.
- Adds examples of how *not* to implement Ord,
inspired by various anti-patterns found in real
world code.
update `compiler-builtins` to 0.1.126
this requires the addition of a bootstrap variant of the new `naked_asm!` macro
r? `@tgross35`
extracted from https://github.com/rust-lang/rust/pull/128651
[`cfg_match`] Generalize inputs
cc #115585
Changes the input type from `item` to `tt`, which makes the macro have the same functionality of `cfg_if`.
Also adds a test to ensure that `stmt_expr_attributes` is not triggered.
Utf8Chunks: add link to Utf8Chunk
It is currently surprisingly non-trivial to go from the `utf8_chunks` method to the docs of the `valid`/`invalid` methods used in the example. This should help.
Since the stabilization in #127679 has reached stage0, 1.82-beta, we can
start using `&raw` freely, and even the soft-deprecated `ptr::addr_of!`
and `ptr::addr_of_mut!` can stop allowing the unstable feature.
I intentionally did not change any documentation or tests, but the rest
of those macro uses are all now using `&raw const` or `&raw mut` in the
standard library.
fix some cfg logic around optimize_for_size and 16-bit targets
Fixes https://github.com/rust-lang/rust/issues/130818.
Fixes https://github.com/rust-lang/rust/issues/129910.
There are still some warnings when building on a 16bit target:
```
warning: struct `AlignedStorage` is never constructed
--> /home/r/src/rust/rustc.2/library/core/src/slice/sort/stable/mod.rs:135:8
|
135 | struct AlignedStorage<T, const N: usize> {
| ^^^^^^^^^^^^^^
|
= note: `#[warn(dead_code)]` on by default
warning: associated items `new` and `as_uninit_slice_mut` are never used
--> /home/r/src/rust/rustc.2/library/core/src/slice/sort/stable/mod.rs:141:8
|
140 | impl<T, const N: usize> AlignedStorage<T, N> {
| -------------------------------------------- associated items in this implementation
141 | fn new() -> Self {
| ^^^
...
145 | fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
| ^^^^^^^^^^^^^^^^^^^
warning: function `quicksort` is never used
--> /home/r/src/rust/rustc.2/library/core/src/slice/sort/unstable/quicksort.rs:19:15
|
19 | pub(crate) fn quicksort<'a, T, F>(
| ^^^^^^^^^
warning: `core` (lib) generated 3 warnings
```
However, the cfg stuff here is sufficiently messy that I didn't want to touch more of it. I think all `feature = "optimize_for_size"` should become `any(feature = "optimize_for_size", target_pointer_width = "16")` but I am not entirely certain. Warnings are fine, Miri will just ignore them.
Cc `@Voultapher`