Expand the automatic implementation of `MetaSized` and `PointeeSized` so
that it is also implemented on non-`Sized` types, just not `ty::Foreign`
(extern type).
Introduce the `MetaSized` and `PointeeSized` traits as supertraits of
`Sized` and initially implement it on everything that currently
implements `Sized` to isolate any changes that simply adding the
traits introduces.
Rollup of 7 pull requests
Successful merges:
- #140056 (Fix a wrong error message in 2024 edition)
- #140220 (Fix detection of main function if there are expressions around it)
- #140249 (Remove `weak` alias terminology)
- #140316 (Introduce `BoxMarker` to improve pretty-printing correctness)
- #140347 (ci: clean more disk space in codebuild)
- #140349 (ci: use aws codebuild for the `dist-x86_64-linux` job)
- #140379 (rustc-dev-guide subtree update)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `weak` alias terminology
I find the "weak" alias terminology to be quite confusing. It implies the existence of "strong" aliases (which do not exist) and I'm not really sure what about weak aliases is "weak". I much prefer "free alias" as the term. I think it's much more obvious what it means as "free function" is a well defined term that already exists in rust.
It's also a little confusing given "weak alias" is already a term in linker/codegen spaces which are part of the compiler too. Though I'm not particularly worried about that as it's usually very obvious if you're talking about the type system or not lol. I'm also currently trying to write documentation about aliases and it's somewhat awkward/confusing to be talking about *weak* aliases, when I'm not really sure what the basis for that as the term actually *is*.
I would also be happy to just find out there's a nice meaning behind calling them "weak" aliases :-)
r? `@oli-obk`
maybe we want a types MCP to decide on a specific naming here? or maybe we think its just too late to go back on this naming decision ^^'
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
elaborate unknowable goals
A reimplemented version of #124532 affecting only the new solver. Always trying to prove super traits ends up causing a fatal overflow error in diesel, so we cannot land this in the old solver.
The following test currently does not pass coherence:
```rust
trait Super {}
trait Sub<T>: Super {}
trait Overlap<T> {}
impl<T, U: Sub<T>> Overlap<T> for U {}
impl<T> Overlap<T> for () {}
fn main() {}
```
We check whether `(): Sub<?t>` holds. This stalls with ambiguity as downstream crates may add an impl for `(): Sub<Local>`. However, its super trait bound `(): Super` cannot be implemented downstream, so this one is known not to hold.
By trying to prove that all the super bounds of a trait before adding a coherence unknowable candidate, this compiles. This is necessary to prevent breakage from enabling `-Znext-solver=coherence` (#121848), see tests/ui/coherence/super-traits/super-trait-knowable-2.rs for more details. The idea is that while there may be an impl of the trait itself we don't know about, if we're able to prove that a super trait is definitely not implemented, then that impl would also never apply/not be well-formed.
This approach is different from #124532 as it allows tests/ui/coherence/super-traits/super-trait-knowable-3.rs to compile. The approach in #124532 only elaborating the root obligations while this approach tries it for all unknowable trait goals.
r? `@compiler-errors`