Several (doc) comments were super outdated or didn't provide enough context.
Some doc comments shoved everything in a single paragraph without respecting
the fact that the first paragraph should be a single sentence because rustdoc
treats these as item descriptions / synopses on module pages.
Don't ICE when encountering bound regions in generator interior type
I'm pretty sure this meant to say "`has_free_regions`", probably just a typo in 4a4fc3bb5b. We can have bound regions (because we only convert non-bound regions into existential regions in generator interiors), but we can't have (non-ReErased) free regions.
r? lcnr
clean up `Sized` checking
This PR cleans up `sized_constraint` and related functions to make them simpler and faster. This should not make more or less code compile, but it can change error output in some rare cases.
## enums and unions are `Sized`, even if they are not WF
The previous code has some special handling for enums, which made them sized if and only if the last field of each variant is sized. For example given this definition (which is not WF)
```rust
enum E<T1: ?Sized, T2: ?Sized, U1: ?Sized, U2: ?Sized> {
A(T1, T2),
B(U1, U2),
}
```
the enum was sized if and only if `T2` and `U2` are sized, while `T1` and `T2` were ignored for `Sized` checking. After this PR this enum will always be sized.
Unsized enums are not a thing in Rust and removing this special case allows us to return an `Option<Ty>` from `sized_constraint`, rather than a `List<Ty>`.
Similarly, the old code made an union defined like this
```rust
union Union<T: ?Sized, U: ?Sized> {
head: T,
tail: U,
}
```
sized if and only if `U` is sized, completely ignoring `T`. This just makes no sense at all and now this union is always sized.
## apply the "perf hack" to all (non-error) types, instead of just type parameters
This "perf hack" skips evaluating `sized_constraint(adt): Sized` if `sized_constraint(adt): Sized` exactly matches a predicate defined on `adt`, for example:
```rust
// `Foo<T>: Sized` iff `T: Sized`, but we know `T: Sized` from a predicate of `Foo`
struct Foo<T /*: Sized */>(T);
```
Previously this was only applied to type parameters and now it is applied to every type. This means that for example this type is now always sized:
```rust
// Note that this definition is WF, but the type `S<T>` not WF in the global/empty ParamEnv
struct S<T>([T]) where [T]: Sized;
```
I don't anticipate this to affect compile time of any real-world program, but it makes the code a bit nicer and it also makes error messages a bit more consistent if someone does write such a cursed type.
## tuples are sized if the last type is sized
The old solver already has this behavior and this PR also implements it for the new solver and `is_trivially_sized`. This makes it so that tuples work more like a struct defined like this:
```rust
struct TupleN<T1, T2, /* ... */ Tn: ?Sized>(T1, T2, /* ... */ Tn);
```
This might improve the compile time of programs with large tuples a little, but is mostly also a consistency fix.
## `is_trivially_sized` for more types
This function is used post-typeck code (borrowck, const eval, codegen) to skip evaluating `T: Sized` in some cases. It will now return `true` in more cases, most notably `UnsafeCell<T>` and `ManuallyDrop<T>` where `T.is_trivially_sized`.
I'm anticipating that this change will improve compile time for some real world programs.
Safe Transmute: Revise safety analysis
This PR migrates `BikeshedIntrinsicFrom` to a simplified safety analysis (described [here](https://github.com/rust-lang/project-safe-transmute/issues/15)) that does not rely on analyzing the visibility of types and fields.
The revised analysis treats primitive types as safe, and user-defined types as potentially carrying safety invariants. If Rust gains explicit (un)safe fields, this PR is structured so that it will be fairly easy to thread support for those annotations into the analysis.
Notably, this PR removes the `Context` type parameter from `BikeshedIntrinsicFrom`. Most of the files changed by this PR are just UI tests tweaked to accommodate the removed parameter.
r? `@compiler-errors`
Fix `async Fn` confirmation for `FnDef`/`FnPtr`/`Closure` types
Fixes three issues:
1. The code in `extract_tupled_inputs_and_output_from_async_callable` was accidentally getting the *future* type and the *output* type (returned by the future) messed up for fnptr/fndef/closure types. :/
2. We have a (class of) bug(s) in the old solver where we don't really support higher ranked built-in `Future` goals for generators. This is not possible to hit on stable code, but [can be hit with `unboxed_closures`](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=e935de7181e37e13515ad01720bcb899) (#121653).
* I'm opting not to fix that in this PR. Instead, I just instantiate placeholders when confirming `async Fn` goals.
4. Fixed a bug when generating `FnPtr` shims for `async Fn` trait goals.
r? oli-obk
Without doing so we use the same candidate cache entry
for `?0: Trait<?1>` and `?0: Trait<?0>`. These goals are different
and we must not use the same entry for them.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
There are lots of functions that modify a diagnostic. This can be via a
`&mut Diagnostic` or a `&mut DiagnosticBuilder`, because the latter type
wraps the former and impls `DerefMut`.
This commit converts all the `&mut Diagnostic` occurrences to `&mut
DiagnosticBuilder`. This is a step towards greatly simplifying
`Diagnostic`. Some of the relevant function are made generic, because
they deal with both errors and warnings. No function bodies are changed,
because all the modifier methods are available on both `Diagnostic` and
`DiagnosticBuilder`.
Ignore own item bounds in parent alias types in `for_each_item_bound`
Fixes#120912
I want to get a vibe check on this approach, which is very obviously a hack, but I believe something that is forwards-compatible with a more thorough solution and "good enough for now".
The problem here is that for a really deep rigid associated type, we are now repeatedly considering unrelated item bounds from the parent alias types, meaning we're doing a *lot* of extra work in the MIR inliner for deeply substituted rigid projections.
This feels intimately related to #107614. In that PR, we split *supertrait* bounds (bound which share the same `Self` type as the predicate which is being elaborated) and *implied* bounds (anything that is implied by elaborating the predicate).
The problem here is related to the fact that we don't maintain the split between these two for `item_bounds`. If we did, then when recursing into a parent alias type, we'd want to consider only the bounds that are given by [`PredicateFilter::All`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/enum.PredicateFilter.html#variant.SelfOnly) **except** those given by [`PredicateFilter::SelfOnly`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/enum.PredicateFilter.html#variant.SelfOnly).
Do not assemble candidates for default impls
There is no reason (as far as I can tell?) that we should assemble an impl candidate for a default impl. This candidate itself does not prove that the impl holds, and any time that it *does* hold, there will be a more specializing non-default impl that also is assembled.
This is because `default impl<T> Foo for T {}` actually expands to `impl<T> Foo for T where T: Foo {}`. The only way to satisfy that where clause (without coinduction) is via *another* implementation that does hold -- precisely an impl that specializes it.
This should fix the specialization related regressions for #116494. That should lead to one root crate regression that doesn't have to do with specialization, which I think we can regress.
r? lcnr cc ``@rust-lang/types``
cc #31844
Merge `impl_polarity` and `impl_trait_ref` queries
Hopefully this is perf neutral. I want to finish https://github.com/rust-lang/rust/pull/120835 and stop using the HIR in `coherent_trait`, which should then give us a perf improvement.
Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
Remove unused args from functions
`#[instrument]` suppresses the unused arguments from a function, *and* suppresses unused methods too! This PR removes things which are only used via `#[instrument]` calls, and fixes some other errors (privacy?) that I will comment inline.
It's possible that some of these arguments were being passed in for the purposes of being instrumented, but I am unconvinced by most of them.