This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
Reword description of automatic impls of `Unsize`.
The existing documentation felt a little unhelpfully concise, so this change tries to improve it by using longer sentences, each of which specifies which kinds of types it applies to as early as possible. In particular, the third item starts with “Structs ...” instead of saying “Foo is a struct” later.
Also, the previous list items “Only the last field has a type involving `T`” and “`T` is not part of the type of any other fields” are, as far as I see, redundant with each other, so I removed the latter.
I have no particular knowledge of `Unsize`; I have attempted to leave the meaning entirely unchanged but may have missed a nuance.
Markdown preview of the edited documentation:
> All implementations of `Unsize` are provided automatically by the compiler.
> Those implementations are:
>
> - Arrays `[T; N]` implement `Unsize<[T]>`.
> - Types implementing a trait `Trait` also implement `Unsize<dyn Trait>`.
> - Structs `Foo<..., T, ...>` implement `Unsize<Foo<..., U, ...>>` if all of these conditions
> are met:
> - `T: Unsize<U>`.
> - Only the last field of `Foo` has a type involving `T`.
> - `Bar<T>: Unsize<Bar<U>>`, where `Bar<T>` stands for the actual type of that last field.
The libs-api team agrees to allow const_trait_impl to appear in the
standard library as long as stable code cannot be broken (they are
properly gated) this means if the compiler teams thinks it's okay, then
it's okay.
My priority on constifying would be:
1. Non-generic impls (e.g. Default) or generic impls with no
bounds
2. Generic functions with bounds (that use const impls)
3. Generic impls with bounds
4. Impls for traits with associated types
For people opening constification PRs: please cc me and/or oli-obk.
The existing documentation felt a little unhelpfully concise, so this
change tries to improve it by using longer sentences, each of which
specifies which kinds of types it applies to as early as possible. In
particular, the third item starts with “Structs ...” instead of
saying “Foo is a struct” later.
Also, the previous list items “Only the last field has a type
involving `T`” and “`T` is not part of the type of any other
fields” are, as far as I see, redundant with each other, so I removed
the latter.
Impl Default for PhantomPinned
`PhantomPinned` is just a marker type, with an obvious default value (the only value). So I can't think of a reason not to do this. Sure, it's used in exotic situations with unsafe code. But the people writing that code can decide for themselves if they can derive `Default`, and in many situations the derived impl will make sense:
```rust
#[derive(Default)]
struct NeedsPin {
marker: PhantomPinned,
buf: [u8; 1024],
ptr_to_data: Option<*const u8>,
}
```
* Don't say that Unpin is used to prevent moves, because it is used
to *allow* moves
* Be more precise about kindedness of things, it is
`Pin<Pointer<Data>>`, rather than just `Pin<Pointer>`.
Code blocks in doc comments are compiled and run, so we show `Copy` works in this example.
Co-authored-by: Poliorcetics <poliorcetics@users.noreply.github.com>
In the current documentation about the `Copy` marker trait, there is a section
with examples of structs that can implement `Copy`. Currently there is no example for
showing that shared references (`&T`) are also `Copy`.
It is worth to have a dedicated example for `&T` being `Copy`, because shared
references are an integral part of the language and it being `Copy` is not as
intuitive as other types that share this behaviour like `i32` or `bool`.
The example picks up on the previous non-`Copy` struct and shows that
structs can be `Copy`, even when they hold a shared reference to a non-`Copy` type.
In the current documentation about the `Copy` marker trait, there is a section
about "additional implementors", which list additional implementors of the `Copy` trait.
The fact that shared references are also `Copy` is mixed with another point,
which makes it hard to recognize and make it seem not as important.
This clarifies the fact that shared references are also `Copy`, by mentioning it as a
separate item in the list of "additional implementors".