Instead of probing for all possible impls that could have caused an
`ImplObligation`, keep track of its `DefId` and obligation spans for
accurate error reporting.
Follow up to #89580. Addresses #89418.
Remove some unnecessary clones.
Tweak output for auto trait impl obligations.
fix a message
implement a rustfix-applicable suggestion
implement `suggest_floating_point_literal`
add `ObligationCauseCode::BinOp`
remove duplicate code
fix function names in uitests
use `Diagnostic` instead of `DiagnosticBuilder`
This makes `Obligation` two words bigger, but avoids allocating a lot of
the time.
I previously tried this in #73983 and it didn't help much, but local
timings look more promising now.
See #91867
This was mostly straightforward. In several places, I take advantage
of the fact that lifetimes are non-hygenic: a macro declares the
'tcx' lifetime, which is then used in types passed in as macro
arguments.
selection deduplicates obligations through a hashset at some point, computing the hashes for ObligationCauseCode
appears to dominate the hashing cost. bodyid + span + discriminant hash hopefully will sufficiently unique
unique enough.
Point at argument instead of call for their obligations
When an obligation is introduced by a specific `fn` argument, point at
the argument instead of the `fn` call if the obligation fails to be
fulfilled.
Move the information about pointing at the call argument expression in
an unmet obligation span from the `FulfillmentError` to a new
`ObligationCauseCode`.
When giving an error about an obligation introduced by a function call
that an argument doesn't fulfill, and that argument is a block, add a
span_label pointing at the innermost tail expression.
Current output:
```
error[E0425]: cannot find value `x` in this scope
--> f10.rs:4:14
|
4 | Some(x * 2)
| ^ not found in this scope
error[E0277]: expected a `FnOnce<({integer},)>` closure, found `Option<_>`
--> f10.rs:2:31
|
2 | let p = Some(45).and_then({
| ______________________--------_^
| | |
| | required by a bound introduced by this call
3 | | |x| println!("doubling {}", x);
4 | | Some(x * 2)
| | -----------
5 | | });
| |_____^ expected an `FnOnce<({integer},)>` closure, found `Option<_>`
|
= help: the trait `FnOnce<({integer},)>` is not implemented for `Option<_>`
```
Previous output:
```
error[E0425]: cannot find value `x` in this scope
--> f10.rs:4:14
|
4 | Some(x * 2)
| ^ not found in this scope
error[E0277]: expected a `FnOnce<({integer},)>` closure, found `Option<_>`
--> f10.rs:2:22
|
2 | let p = Some(45).and_then({
| ^^^^^^^^ expected an `FnOnce<({integer},)>` closure, found `Option<_>`
|
= help: the trait `FnOnce<({integer},)>` is not implemented for `Option<_>`
```
Partially address #27300. Will require rebasing on top of #88546.
Move the information about pointing at the call argument expression in
an unmet obligation span from the `FulfillmentError` to a new
`ObligationCauseCode`.
Const drop
The changes are pretty primitive at this point. But at least it works. ^-^
Problems with the current change that I can think of now:
- [x] `~const Drop` shouldn't change anything in the non-const world.
- [x] types that do not have drop glues shouldn't fail to satisfy `~const Drop` in const contexts. `struct S { a: u8, b: u16 }` This might not fail for `needs_non_const_drop`, but it will fail in `rustc_trait_selection`.
- [x] The current change accepts types that have `const Drop` impls but have non-const `Drop` glue.
Fixes#88424.
Significant Changes:
- `~const Drop` is no longer treated as a normal trait bound. In non-const contexts, this bound has no effect, but in const contexts, this restricts the input type and all of its transitive fields to either a) have a `const Drop` impl or b) can be trivially dropped (i.e. no drop glue)
- `T: ~const Drop` will not be linted like `T: Drop`.
- Instead of recursing and iterating through the type in `rustc_mir::transform::check_consts`, we use the trait system to special case `~const Drop`. See [`rustc_trait_selection::...::candidate_assembly#assemble_const_drop_candidates`](https://github.com/fee1-dead/rust/blob/const-drop/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs#L817) and others.
Changes not related to `const Drop`ping and/or changes that are insignificant:
- `Node.constness_for_typeck` no longer returns `hir::Constness::Const` for type aliases in traits. This was previously used to hack how we determine default bound constness for items. But because we now use an explicit opt-in, it is no longer needed.
- Removed `is_const_impl_raw` query. We have `impl_constness`, and the only existing use of that query uses `HirId`, which means we can just operate it with hir.
- `ty::Destructor` now has a field `constness`, which represents the constness of the destructor.
r? `@oli-obk`
Trait upcasting coercion (part 3)
By using separate candidates for each possible choice, this fixes type-checking issues in previous commits.
r? `@nikomatsakis`
During function type-checking, we normalize any associated types in
the function signature (argument types + return type), and then
create WF obligations for each of the normalized types. The HIR wf code
does not currently support this case, so any errors that we get have
imprecise spans.
This commit extends `ObligationCauseCode::WellFormed` to support
recording a function parameter, allowing us to get the corresponding
HIR type if an error occurs. Function typechecking is modified to
pass this information during signature normalization and WF checking.
The resulting code is fairly verbose, due to the fact that we can
no longer normalize the entire signature with a single function call.
As part of the refactoring, we now perform HIR-based WF checking
for several other 'typed items' (statics, consts, and inherent impls).
As a result, WF and projection errors in a function signature now
have a precise span, which points directly at the responsible type.
If a function signature is constructed via a macro, this will allow
the error message to point at the code 'most responsible' for the error
(e.g. a user-supplied macro argument).