Unwinding after fork() in the child is UB on some platforms, because
on those (including musl) malloc can be UB in the child of a
multithreaded program, and unwinding must box for the payload.
Even if it's safe, unwinding past fork() in the child causes whatever
traps the unwind to return twice. This is very strange and clearly
not desirable. With the default behaviour of the thread library, this
can even result in a panic in the child being transformed into zero
exit status (ie, success) as seen in the parent!
Fixes#79740.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Replace 'NULL' with 'null'
This replaces occurrences of "NULL" with "null" in docs, comments, and compiler error/lint messages. This is for the sake of consistency, as the lowercase "null" is already the dominant form in Rust. The all-caps NULL looks like the C macro (or SQL keyword), which seems out of place in a Rust context, given that NULL does not exist in the Rust language or standard library (instead having [`ptr::null()`](https://doc.rust-lang.org/stable/std/ptr/fn.null.html)).
Add std::os::unix::fs::chroot to change the root directory of the current process
This is a straightforward wrapper that uses the existing helpers for C
string handling and errno handling.
Having this available is convenient for UNIX utility programs written in
Rust, and avoids having to call the unsafe `libc::chroot` directly and
handle errors manually, in a program that may otherwise be entirely safe
code.
Reuse `sys::unix::cmath` on other platforms
Reuse `sys::unix::cmath` on all non-`windows` platforms.
`unix` is chosen as the canonical location instead of `unsupported` or `common` because `unsupported` doesn't make sense semantically and `common` is reserved for code that is supported on all platforms. Also `unix` is already the home of some non-`windows` code that is technically not exclusive to `unix` like `unix::path`.
This is a straightforward wrapper that uses the existing helpers for C
string handling and errno handling.
Having this available is convenient for UNIX utility programs written in
Rust, and avoids having to call the unsafe `libc::chroot` directly and
handle errors manually, in a program that may otherwise be entirely safe
code.
Inline most raw socket, fd and handle conversions
Now that file descriptor types on Unix have niches, it is advantageous for user libraries which provide file descriptor wrappers (e.g. `Socket` from socket2) to store a `File` internally instead of a `RawFd`, so that the niche can be taken advantage of. However, doing so will currently result in worse performance as `IntoRawFd`, `FromRawFd` and `AsRawFd` are not inlined. This change adds `#[inline]` to those methods on std types that wrap file descriptors, handles or sockets.
Rework `init` and `cleanup`
This PR reworks the code in `std` that runs before and after `main` and centralizes this code respectively in the functions `init` and `cleanup` in both `sys_common` and `sys`. This makes is easy to see what code is executed during initialization and cleanup on each platform just by looking at e.g. `sys::windows::init`.
Full list of changes:
- new module `rt` in `sys_common` to contain `init` and `cleanup` and the runtime macros.
- `at_exit` and the mechanism to register exit handlers has been completely removed. In practice this was only used for closing sockets on windows and flushing stdout, which have been moved to `cleanup`.
- <s>On windows `alloc` and `net` initialization is now done in `init`, this saves a runtime check in every allocation and network use.</s>
Remove `sys::args::Args::inner_debug` and use `Debug` instead
This removes the method `sys::args::Args::inner_debug` on all platforms and implements `Debug` for `Args` instead.
I believe this creates a more natural API for the different platforms under `sys`: export a type `Args: Debug + Iterator + ...` vs. `Args: Iterator + ...` and with a method `inner_debug`.
Move `sys_common::rwlock::StaticRWLock` etc. to `sys::unix::rwlock`
This moves `sys_common::rwlock::StaticRwLock`, `RWLockReadGuard` and `RWLockWriteGuard` to `sys::unix::rwlock`. They are already `#[cfg(unix)]` and don't need to be in `sys_common`.
Fix join_paths error display.
On unix, the error from `join_paths` looked like this:
```
path segment contains separator `58`
```
This PR changes it to look like this:
```
path segment contains separator `:`
```
Fix stack overflow detection on FreeBSD 11.1+
Beginning with FreeBSD 10.4 and 11.1, there is one guard page by
default. And the stack autoresizes, so if Rust allocates its own guard
page, then FreeBSD's will simply move up one page. The best solution is
to just use the OS's guard page.
Beginning with FreeBSD 10.4 and 11.1, there is one guard page by
default. And the stack autoresizes, so if Rust allocates its own guard
page, then FreeBSD's will simply move up one page. The best solution is
to just use the OS's guard page.
unix: Fix feature(unix_socket_ancillary_data) on macos and other BSDs
This adds support for CMSG handling on macOS and fixes it on OpenBSD and possibly other BSDs.
When traversing the CMSG list, the previous code had an exception for Android where the next element after the last pointer could point to the first pointer instead of NULL. This is actually not specific to Android: the `libc::CMSG_NXTHDR` implementation for Linux and emscripten have a special case to return NULL when the length of the previous element is zero; most other implementations simply return the previous element plus a zero offset in this case.
This MR makes the check non-optional which fixes CMSG handling and a possible endless loop on such systems; tested with file descriptor passing on OpenBSD, Linux, and macOS.
This MR additionally adds `SocketAncillary::is_empty` because clippy is right that it should be added.
This belongs to the `feature(unix_socket_ancillary_data)` tracking issue: https://github.com/rust-lang/rust/issues/76915
r? `@joshtriplett`
Improve fs error open_from unix
Consistency for #79399
Suggested by JohnTitor
r? `@JohnTitor`
Not user if the error is too long now, do we handle long errors well?
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
ExitStatus: print "exit status: {}" rather than "exit code: {}" on unix
Proper Unix terminology is "exit status" (vs "wait status"). "exit
code" is imprecise on Unix and therefore unclear. (As far as I can
tell, "exit code" is correct terminology on Windows.)
This new wording is unfortunately inconsistent with the identifier
names in the Rust stdlib.
It is the identifier names that are wrong, as discussed at length in eg
https://doc.rust-lang.org/nightly/std/process/struct.ExitStatus.htmlhttps://doc.rust-lang.org/nightly/std/os/unix/process/trait.ExitStatusExt.html
Unfortunately for API stability reasons it would be a lot of work, and
a lot of disruption, to change the names in the stdlib (eg to rename
`std::process::ExitStatus` to `std::process::ChildStatus` or
something), but we should fix the message output. Many (probably
most) readers of these messages about exit statuses will be users and
system administrators, not programmers, who won't even know that Rust
has this wrong terminology.
So I think the right thing is to fix the documentation (as I have
already done) and, now, the terminology in the implementation.
This is a user-visible change to the behaviour of all Rust programs
which run Unix subprocesses. Hopefully no-one is matching against the
exit status string, except perhaps in tests.
This adds support for CMSG handling on macOS and fixes it on OpenBSD
and other BSDs.
When traversing the CMSG list, the previous code had an exception for
Android where the next element after the last pointer could point to
the first pointer instead of NULL. This is actually not specific to
Android: the `libc::CMSG_NXTHDR` implementation for Linux and
emscripten have a special case to return NULL when the length of the
previous element is zero; most other implementations simply return the
previous element plus a zero offset in this case.
This MR additionally adds `SocketAncillary::is_empty` because clippy
is right that it should be added.
Proper Unix terminology is "exit status" (vs "wait status"). "exit
code" is imprecise on Unix and therefore unclear. (As far as I can
tell, "exit code" is correct terminology on Windows.)
This new wording is unfortunately inconsistent with the identifier
names in the Rust stdlib.
It is the identifier names that are wrong, as discussed at length in eg
https://doc.rust-lang.org/nightly/std/process/struct.ExitStatus.htmlhttps://doc.rust-lang.org/nightly/std/os/unix/process/trait.ExitStatusExt.html
Unfortunately for API stability reasons it would be a lot of work, and
a lot of disruption, to change the names in the stdlib (eg to rename
`std::process::ExitStatus` to `std::process::ChildStatus` or
something), but we should fix the message output. Many (probably
most) readers of these messages about exit statuses will be users and
system administrators, not programmers, who won't even know that Rust
has this wrong terminology.
So I think the right thing is to fix the documentation (as I have
already done) and, now, the terminology in the implementation.
This is a user-visible change to the behaviour of all Rust programs
which run Unix subprocesses. Hopefully no-one is matching against the
exit status string, except perhaps in tests.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Add internal io::Error::new_const to avoid allocations.
This makes it possible to have a io::Error containing a message with zero allocations, and uses that everywhere to avoid the *three* allocations involved in `io::Error::new(kind, "message")`.
The function signature isn't perfect, because it needs a reference to the `&str`. So for now, this is just a `pub(crate)` function. Later, we'll be able to use `fn new_const<MSG: &'static str>(kind: ErrorKind)` to make that a bit better. (Then we'll also be able to use some ZST trickery if that would result in more efficient code.)
See https://github.com/rust-lang/rust/issues/83352
Move `std::sys::unix::platform` to `std::sys::unix::ext`
This moves the operating system dependent alias `platform` (`std::os::{linux, android, ...}`) from `std::sys::unix` to `std::sys::unix::ext` (a.k.a. `std::os::unix`), removing the need for compatibility code in `unix_ext` when documenting on another platform.
This is also a step in making it possible to properly move `std::sys::unix::ext` to `std::os::unix`, as ideally `std::sys` should not depend on the rest of `std`.