Consolidate and improve error messaging for `CoerceUnsized` and `DispatchFromDyn`
Firstly, this PR consolidates and reworks the error diagnostics for `CoercePointee` and `DispatchFromDyn`. There was a ton of duplication for no reason -- this reworks both the errors and also the error codes, since they can be shared between both traits since they report the same thing.
Secondly, when encountering a struct with multiple fields that must be coerced, point out the field spans, rather than mentioning the fields by name. This makes the error message clearer, but also means that we don't mention the `__S` dummy parameter for `derive(CoercePointee)`.
Thirdly, emit a custom error message when we encounter a trait error that comes from the recursive field `CoerceUnsized`/`DispatchFromDyn` trait check. **Note:** This is the only one I'm not too satisfied with -- I think it could use some more refinement, but ideally it explains that the field must be an unsize-able pointer... Feedback welcome.
Finally, don't emit `DispatchFromDyn` validity errors if we detect `CoerceUnsized` validity errors from an impl of the same ADT.
This is best reviewed per commit.
r? `@oli-obk` perhaps?
cc `@dingxiangfei2009` -- sorry for making my own attempt at this PR, but I wanted to see if I could implement a fix for #136796 in a less complicated way, since communicating over github review comments can be a bit slow. I'll leave comments inline to explain my thinking about the diagnostics changes.
New attribute parsing infrastructure
Another step in the plan outlined in https://github.com/rust-lang/rust/issues/131229
introduces infrastructure for structured parsers for attributes, as well as converting a couple of complex attributes to have such structured parsers.
This PR may prove too large to review. I left some of my own comments to guide it a little. Some general notes:
- The first commit is basically standalone. It just preps some mostly unrelated sources for the rest of the PR to work. It might not have enormous merit on its own, but not negative merit either. Could be merged alone, but also doesn't make the review a whole lot easier. (but it's only +274 -209)
- The second commit is the one that introduces new infrastructure. It's the important one to review.
- The 3rd commit uses the new infrastructure showing how some of the more complex attributes can be parsed using it. Theoretically can be split up, though the parsers in this commit are the ones that really test the new infrastructure and show that it all works.
- The 4th commit fixes up rustdoc and clippy. In the previous 2 they didn't compile yet while the compiler does. Separated them out to separate concerns and make the rest more palatable.
- The 5th commit blesses some test outputs. Sometimes that's just because a diagnostic happens slightly earlier than before, which I'd say is acceptable. Sometimes a diagnostic is now only emitted once where it would've been twice before (yay! fixed some bugs). One test I actually moved from crashes to fixed, because it simply doesn't crash anymore. That's why this PR Closes#132391. I think most choices I made here are generally reasonable, but let me know if you disagree anywhere.
- The 6th commit adds a derive to pretty print attributes
- The 7th removes smir apis for attributes, for the time being. The api will at some point be replaced by one based on `rustc_ast_data_structures::AttributeKind`
In general, a lot of the additions here are comments. I've found it very important to document new things in the 2nd commit well so other people can start using it.
Closes#132391Closes#136717
Type lowering can give non-fatal errors that dropck then uses to suppress its own errors. Assume this is the cases when we can't find the error in borrowck.
Added to demonstrate change in output in following commit. Many more
interesting tests change with different output, missing errors, new
errors, etc related to this but they all depend on feature flags and
are much more complex than this.
In the standard library, the `Extend` impl for `Iterator` (specialised
with `TrustedLen`) has a parameter which is constrained by a projection
predicate. This projection predicate provides a value for an inference
variable but host effect evaluation wasn't resolving variables first.
Adding the extra resolve can the number of errors in some tests when they
gain host effect predicates, but this is not unexpected as calls to
`resolve_vars_if_possible` can cause more error tainting to happen.
Co-authored-by: Boxy <rust@boxyuwu.dev>
Tighten `str-to-string-128690.rs``CHECK{,-NOT}`s to make it less likely to incorrectly fail with symbol name mangling
The `invoke` to match on to `CHECK` or `CHECK-NOT` (latest master) looks like
```llvm
%_0.i.i.i.i.i.i.i.i.i.i.i.i.i1.i = invoke noundef zeroext i1 ``@"_ZN42_$LT$str$u20$as$u20$core..fmt..Display$GT$3fmt17ha18033e7fb4f14fcE"(ptr`` noalias noundef nonnull readonly align 1 %_3.val.i.i.i.i.i.i.i.i.i.i.i.i.i, i64 noundef %_3.val1.i.i.i.i.i.i.i.i.i.i.i.i.i, ptr noalias noundef nonnull align 8 dereferenceable(64) %formatter.i)
to label %bb1.i unwind label %cleanup.i, !noalias !80
```
in the local `.ll` output.
This test incorrectly failed in https://github.com/rust-lang/rust/pull/137483#issuecomment-2676925819 due to
```
// CHECK-NOT: {{(call|invoke).*}}fmt
```
matching against the unrelated call
```llvm
tail call void ``@_RNvNtCseLfmtnDCoTB_5alloc7raw_vec12handle_error``
```
It's not pretty by any means, but...
r? ``@saethlin``
Emit getelementptr inbounds nuw for pointer::add()
Lower pointer::add (via intrinsic::offset with unsigned offset) to getelementptr inbounds nuw on LLVM versions that support it. This lets LLVM make use of the pre-condition that the offset addition does not wrap in an unsigned sense. Together with inbounds, this also implies that the offset is non-negative.
Fixes https://github.com/rust-lang/rust/issues/137217.
Fix rustdoc test directives that were accidentally ignored 🧐
Replace "// `@"` with "//@ ", and fix the tests so they actually pass, after directives are checked.
~~Only the first commit is mandatory, other two are small drive-bys.~~
intrinsics: unify rint, roundeven, nearbyint in a single round_ties_even intrinsic
LLVM has three intrinsics here that all do the same thing (when used in the default FP environment). There's no reason Rust needs to copy that historically-grown mess -- let's just have one intrinsic and leave it up to the LLVM backend to decide how to lower that.
Suggested by `@hanna-kruppe` in https://github.com/rust-lang/rust/issues/136459; Cc `@tgross35`
try-job: test-various
vectorcall ABI: require SSE2
According to the official docs at https://learn.microsoft.com/en-us/cpp/cpp/vectorcall, SSE2 is required for this ABI. Add a check that enforces this.
I put this together with the other checks ensuring the target features required for a function are present... however, since the ABI is known pre-monomorphization, it would be possible to do this check earlier, which would have the advantage of checking even in `cargo check`. It would have the disadvantage of spreading this code in yet more places.
The first commit just does a little refactoring of the mono-time ABI check to make it easier to add the new check.
Cc `@workingjubilee`
try-job: dist-i586-gnu-i586-i686-musl
Fix "missing match arm body" suggestion involving `!`
Include the match arm guard in the gated span, so that the suggestion to add a body is correct instead of inserting the body before the guard.
Make the suggestion verbose.
```
error: `match` arm with no body
--> $DIR/feature-gate-never_patterns.rs:43:9
|
LL | Some(_) if false,
| ^^^^^^^^^^^^^^^^
|
help: add a body after the pattern
|
LL | Some(_) if false => { todo!() },
| ++++++++++++++
```
r? `@compiler-errors`
Improve a bit HIR pretty printer
This PR improve (a bit) the HIR pretty printer.
It does so by:
- Not printing elided lifetimes (those are not expressible in surface Rust anyway)
- And by rendering implicit self with the shorthand syntax
I also tried fixing some indentation and other things but gave up for now.
Best reviewed commit by commit.
[Debuginfo] Add MSVC Synthetic and Summary providers to LLDB
Adds handling for `tuple$<>`, `ref$<slice$2<>`, `ref$<str$>` and `enum2$<>`.
Also fixes a bug in MSVC vec/string handling where the script was unable to determine the element's type due to LLDB ignoring template arg debug information
<details>
<summary>Sample code</summary>
```rust
pub enum Number {
One = 57,
Two = 99,
}
#[repr(u8)]
pub enum Container {
First(u32),
Second { val: u64, val2: i8 },
Third,
}
...
let u8_val = b'a';
let float = 42.78000000000001;
let tuple = (u8_val, float);
let str_val = "eef";
let mut string = "freef".to_owned();
let mut_str = string.as_mut_str();
let array: [u8; 4] = [1, 2, 3, 4];
let ref_array = array.as_slice();
let mut array2: [u32; 4] = [1, 2, 3, 4];
let mut_array = array2.as_mut_slice();
let enum_val = Number::One;
let mut enum_val2 = Number::Two;
let sum_val = Container::First(15);
let sum_val_2 = Container::Second { val: 0, val2: 0 };
let sum_val_3 = Container::Third;
let non_zero = NonZeroU128::new(100).unwrap();
let large_discr = NonZeroU128::new(255);
```
</details>
Before:

After:

try-job: aarch64-apple
try-job: x86_64-msvc-1
try-job: i686-msvc-1
try-job: x86_64-mingw-1
try-job: i686-mingw
try-job: aarch64-gnu
Remove invalid suggestion of into_iter for extern macro
Fixes#137345#109082 is closed due to performance issue, do we have any other solution for this kind of issue?
Give `global_asm` a fake body to store typeck results, represent `sym fn` as a hir expr to fix `sym fn` operands with lifetimes
There are a few intertwined problems with `sym fn` operands in both inline and global asm macros.
Specifically, unlike other anon consts, they may evaluate to a type with free regions in them without actually having an item-level type annotation to give them a "proper" type. This is in contrast to named constants, which always have an item-level type annotation, or unnamed constants which are constrained by their position (e.g. a const arg in a turbofish, or a const array length).
Today, we infer the type of the operand by looking at the HIR typeck results; however, those results are region-erased, so during borrowck we ICE since we don't expect to encounter erased regions. We can't just fill this type with something like `'static`, since we may want to use real (free) regions:
```rust
fn foo<'a>() {
asm!("/* ... */", sym bar::<&'a ()>);
}
```
The first idea may be to represent `sym fn` operands using *inline* consts instead of anon consts. This makes sense, since inline consts can reference regions from the parent body (like the `'a` in the example above). However, this introduces a problem with `global_asm!`, which doesn't *have* a parent body; inline consts *must* be associated with a parent body since they are not a body owner of their own. In #116087, I attempted to fix this by using two separate `sym` operands for global and inline asm. However, this led to a lot of confusion and also some unattractive code duplication.
In this PR, I adjust the lowering of `global_asm!` so that it's lowered in a "fake" HIR body. This body contains a single expression which is `ExprKind::InlineAsm`; we don't *use* this HIR body, but it's used in typeck and borrowck so that we can properly infer and validate the the lifetimes of `sym fn` operands.
I then adjust the lowering of `sym fn` to instead be represented with a HIR expression. This is both because it's no longer necessary to represent this operand as an anon const, since it's *just* a path expression, and also more importantly to sidestep yet another ICE (https://github.com/rust-lang/rust/issues/137179), which has to do with the existing code breaking an invariant of def-id creation and anon consts. Specifically, we are not allowed to synthesize a def-id for an anon const when that anon const contains expressions with def-ids whose parent is *not* that anon const. This is somewhat related to https://github.com/rust-lang/rust/pull/130443#issuecomment-2445678945, which is also a place in the compiler where synthesizing anon consts leads to def-id parenting issue.
As a side-effect, this consolidates the type checking for inline and global asm, so it allows us to simplify `InlineAsmCtxt` a bit. It also allows us to delete a bit of hacky code from anon const `type_of` which was there to detect `sym fn` operands specifically. This also could be generalized to support `const` asm operands with types with lifetimes in them. Since we specifically reject these consts today, I'm not going to change the representation of those consts (but they'd just be turned into inline consts).
r? oli-obk -- mostly b/c you're patient and also understand the breadth of the code that this touches, please reassign if you don't want to review this.
Fixes#111709Fixes#96304Fixes#137179