Bump libc and fix remove_dir_all on Fuchsia after CVE fix
With the previous `is_dir` impl, we would attempt to unlink
a directory in the None branch, but Fuchsia supports returning
ENOTEMPTY from unlinkat() without the AT_REMOVEDIR flag because
we don't currently differentiate unlinking files and directories
by default.
On the Fuchsia side I've opened https://fxbug.dev/92273 to discuss
whether this is the correct behavior, but it doesn't seem like
addressing the error code is necessary to make our tests happy.
Depends on https://github.com/rust-lang/libc/pull/2654 since we
apparently haven't needed to reference DT_UNKNOWN before this.
With the previous `is_dir` impl, we would attempt to unlink
a directory in the None branch, but Fuchsia supports returning
ENOTEMPTY from unlinkat() without the AT_REMOVEDIR flag because
we don't currently differentiate unlinking files and directories
by default.
On the Fuchsia side I've opened https://fxbug.dev/92273 to discuss
whether this is the correct behavior, but it doesn't seem like
addressing the error code is necessary to make our tests happy.
Updates std's libc crate to include DT_UNKNOWN for Fuchsia.
With the addition of `sock_accept()` to snapshot1, simple networking via
a passed `TcpListener` is possible. This patch implements the basics to
make a simple server work.
Signed-off-by: Harald Hoyer <harald@profian.com>
Add a `try_clone()` function to `OwnedFd`.
As suggested in #88564. This adds a `try_clone()` to `OwnedFd` by
refactoring the code out of the existing `File`/`Socket` code.
r? ``@joshtriplett``
Fix STD compilation for the ESP-IDF target (regression from CVE-2022-21658)
Commit 54e22eb7db broke the compilation of STD for the ESP-IDF embedded "unix-like" Tier 3 target, because the fix for [CVE-2022-21658](https://blog.rust-lang.org/2022/01/20/Rust-1.58.1.html) uses [libc flags](https://github.com/esp-rs/esp-idf-svc/runs/4892221554?check_suite_focus=true) which are not supported on the ESP-IDF platform.
This PR simply redirects the ESP-IDF compilation to the "classic" implementation, similar to REDOX. This should be safe because:
* Neither of the two filesystems supported by ESP-IDF (spiffs and fatfs) support [symlinks](https://github.com/natevw/fatfs/blob/master/README.md) in the first place
* There is no notion of fs permissions at all, as the ESP-IDF is an embedded platform that does not have the notion of users, groups, etc.
* Similarly, ESP-IDF has just one "process" - the firmware itself - which contains the user code and the "OS" fused together and running with all permissions
Print a helpful message if unwinding aborts when it reaches a nounwind function
This is implemented by routing `TerminatorKind::Abort` back through the panic handler, but with a special flag in the `PanicInfo` which indicates that the panic handler should *not* attempt to unwind the stack and should instead abort immediately.
This is useful for the planned change in https://github.com/rust-lang/lang-team/issues/97 which would make `Drop` impls `nounwind` by default.
### Code
```rust
#![feature(c_unwind)]
fn panic() {
panic!()
}
extern "C" fn nounwind() {
panic();
}
fn main() {
nounwind();
}
```
### Before
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Illegal instruction (core dumped)
```
### After
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'panic in a function that cannot unwind', test.rs:7:1
stack backtrace:
0: 0x556f8f86ec9b - <std::sys_common::backtrace::_print::DisplayBacktrace as core::fmt::Display>::fmt::hdccefe11a6ac4396
1: 0x556f8f88ac6c - core::fmt::write::he152b28c41466ebb
2: 0x556f8f85d6e2 - std::io::Write::write_fmt::h0c261480ab86f3d3
3: 0x556f8f8654fa - std::panicking::default_hook::{{closure}}::h5d7346f3ff7f6c1b
4: 0x556f8f86512b - std::panicking::default_hook::hd85803a1376cac7f
5: 0x556f8f865a91 - std::panicking::rust_panic_with_hook::h4dc1c5a3036257ac
6: 0x556f8f86f079 - std::panicking::begin_panic_handler::{{closure}}::hdda1d83c7a9d34d2
7: 0x556f8f86edc4 - std::sys_common::backtrace::__rust_end_short_backtrace::h5b70ed0cce71e95f
8: 0x556f8f865592 - rust_begin_unwind
9: 0x556f8f85a764 - core::panicking::panic_no_unwind::h2606ab3d78c87899
10: 0x556f8f85b910 - test::nounwind::hade6c7ee65050347
11: 0x556f8f85b936 - test::main::hdc6e02cb36343525
12: 0x556f8f85b7e3 - core::ops::function::FnOnce::call_once::h4d02663acfc7597f
13: 0x556f8f85b739 - std::sys_common::backtrace::__rust_begin_short_backtrace::h071d40135adb0101
14: 0x556f8f85c149 - std::rt::lang_start::{{closure}}::h70dbfbf38b685e93
15: 0x556f8f85c791 - std::rt::lang_start_internal::h798f1c0268d525aa
16: 0x556f8f85c131 - std::rt::lang_start::h476a7ee0a0bb663f
17: 0x556f8f85b963 - main
18: 0x7f64c0822b25 - __libc_start_main
19: 0x556f8f85ae8e - _start
20: 0x0 - <unknown>
thread panicked while panicking. aborting.
Aborted (core dumped)
```
readdir() is preferred over readdir_r() on Linux and many other
platforms because it more gracefully supports long file names. Both
glibc and musl (and presumably all other Linux libc implementations)
guarantee that readdir() is thread-safe as long as a single DIR* is not
accessed concurrently, which is enough to make a readdir()-based
implementation of ReadDir safe. This implementation is already used for
some other OSes including Fuchsia, Redox, and Solaris.
See #40021 for more details. Fixes#86649. Fixes#34668.
Modifications to `std::io::Stdin` on Windows so that there is no longer a 4-byte buffer minimum in read().
This is an attempted fix of issue #91722, where a too-small buffer was passed to the read function of stdio on Windows. This caused an error to be returned when `read_to_end` or `read_to_string` were called. Both delegate to `std::io::default_read_to_end`, which creates a buffer that is of length >0, and forwards it to `std::io::Stdin::read()`. The latter method returns an error if the length of the buffer is less than 4, as there might not be enough space to allocate a UTF-16 character. This creates a problem when the buffer length is in `0 < N < 4`, causing the bug.
The current modification creates an internal buffer, much like the one used for the write functions
I'd also like to acknowledge the help of ``@agausmann`` and ``@hkratz`` in detecting and isolating the bug, and for suggestions that made the fix possible.
Couple disclaimers:
- Firstly, I didn't know where to put code to replicate the bug found in the issue. It would probably be wise to add that case to the testing suite, but I'm afraid that I don't know _where_ that test should be added.
- Secondly, the code is fairly fundamental to IO operations, so my fears are that this may cause some undesired side effects ~or performance loss in benchmarks.~ The testing suite runs on my computer, and it does fix the issue noted in #91722.
- Thirdly, I left the "surrogate" field in the Stdin struct, but from a cursory glance, it seems to be serving the same purpose for other functions. Perhaps merging the two would be appropriate.
Finally, this is my first pull request to the rust language, and as such some things may be weird/unidiomatic/plain out bad. If there are any obvious improvements I could do to the code, or any other suggestions, I would appreciate them.
Edit: Closes#91722
Quote bat script command line
Fixes#91991
[`CreateProcessW`](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw#parameters) should only be used to run exe files but it does have some (undocumented) special handling for files with `.bat` and `.cmd` extensions. Essentially those magic extensions will cause the parameters to be automatically rewritten. Example pseudo Rust code (note that `CreateProcess` starts with an optional application name followed by the application arguments):
```rust
// These arguments...
CreateProcess(None, `@"foo.bat` "hello world""`@,` ...);
// ...are rewritten as
CreateProcess(Some(r"C:\Windows\System32\cmd.exe"), `@""foo.bat` "hello world"""`@,` ...);
```
However, when setting the first parameter (the application name) as we now do, it will omit the extra level of quotes around the arguments:
```rust
// These arguments...
CreateProcess(Some("foo.bat"), `@"foo.bat` "hello world""`@,` ...);
// ...are rewritten as
CreateProcess(Some(r"C:\Windows\System32\cmd.exe"), `@"foo.bat` "hello world""`@,` ...);
```
This means the arguments won't be passed to the script as intended.
Note that running batch files this way is undocumented but people have relied on this so we probably shouldn't break it.
They are also removed from the prelude as per the decision in
https://github.com/rust-lang/rust/issues/87228.
stdarch and compiler-builtins are updated to work with the new, stable
asm! and global_asm! macros.
Implement most of RFC 2930, providing the ReadBuf abstraction
This replaces the `Initializer` abstraction for permitting reading into uninitialized buffers, closing #42788.
This leaves several APIs described in the RFC out of scope for the initial implementation:
* read_buf_vectored
* `ReadBufs`
Closes#42788, by removing the relevant APIs.
Update std::env::temp_dir to use GetTempPath2 on Windows when available.
As a security measure, Windows 11 introduces a new temporary directory API, GetTempPath2.
When the calling process is running as SYSTEM, a separate temporary directory
will be returned inaccessible to non-SYSTEM processes. For non-SYSTEM processes
the behavior will be the same as before.
This can help mitigate against attacks such as this one:
https://medium.com/csis-techblog/cve-2020-1088-yet-another-arbitrary-delete-eop-a00b97d8c3e2
Compatibility risk: Software which relies on temporary files to communicate between SYSTEM and non-SYSTEM
processes may be affected by this change. In many cases, such patterns may be vulnerable to the very
attacks the new API was introduced to harden against.
I'm unclear on the Rust project's tolerance for such change-of-behavior in the standard library. If anything,
this PR is meant to raise awareness of the issue and hopefully start the conversation.
How tested: Taking the example code from the documentation and running it through psexec (from SysInternals) on
Win10 and Win11.
On Win10:
C:\test>psexec -s C:\test\main.exe
<...>
Temporary directory: C:\WINDOWS\TEMP\
On Win11:
C:\test>psexec -s C:\test\main.exe
<...>
Temporary directory: C:\Windows\SystemTemp\
Refactor weak symbols in std::sys::unix
This makes a few changes to the weak symbol macros in `sys::unix`:
- `dlsym!` is added to keep the functionality for runtime `dlsym`
lookups, like for `__pthread_get_minstack@GLIBC_PRIVATE` that we don't
want to show up in ELF symbol tables.
- `weak!` now uses `#[linkage = "extern_weak"]` symbols, so its runtime
behavior is just a simple null check. This is also used by `syscall!`.
- On non-ELF targets (macos/ios) where that linkage is not known to
behave, `weak!` is just an alias to `dlsym!` for the old behavior.
- `raw_syscall!` is added to always call `libc::syscall` on linux and
android, for cases like `clone3` that have no known libc wrapper.
The new `weak!` linkage does mean that you'll get versioned symbols if
you build with a newer glibc, like `WEAK DEFAULT UND statx@GLIBC_2.28`.
This might seem problematic, but old non-weak symbols can tie the build
to new versions too, like `dlsym@GLIBC_2.34` from their recent library
unification. If you build with an old glibc like `dist-x86_64-linux`
does, you'll still get unversioned `WEAK DEFAULT UND statx`, which may
be resolved based on the runtime glibc.
I also found a few functions that don't need to be weak anymore:
- Android can directly use `ftruncate64`, `pread64`, and `pwrite64`, as
these were added in API 12, and our baseline is API 14.
- Linux can directly use `splice`, added way back in glibc 2.5 and
similarly old musl. Android only added it in API 21 though.
According to documentation, the listed errnos should only occur
if the `copy_file_range` call cannot be made at all, so the
assert be correct. However, since in practice file system
drivers (incl. FUSE etc.) can return any errno they want, we
should not panic here.
Fixes#91152
Windows: Resolve `process::Command` program without using the current directory
Currently `std::process::Command` searches many directories for the executable to run, including the current directory. This has lead to a [CVE for `ripgrep`](https://cve.circl.lu/cve/CVE-2021-3013) but presumably other command line utilities could be similarly vulnerable if they run commands. This was [discussed on the internals forum](https://internals.rust-lang.org/t/std-command-resolve-to-avoid-security-issues-on-windows/14800). Also discussed was [which directories should be searched](https://internals.rust-lang.org/t/windows-where-should-command-new-look-for-executables/15015).
EDIT: This PR originally removed all implicit paths. They've now been added back as laid out in the rest of this comment.
## Old Search Strategy
The old search strategy is [documented here][1]. Additionally Rust adds searching the child's paths (see also #37519). So the full list of paths that were searched was:
1. The directories that are listed in the child's `PATH` environment variable.
2. The directory from which the application loaded.
3. The current directory for the parent process.
4. The 32-bit Windows system directory.
5. The 16-bit Windows system directory.
6. The Windows directory.
7. The directories that are listed in the PATH environment variable.
## New Search Strategy
The new strategy removes the current directory from the searched paths.
1. The directories that are listed in the child's PATH environment variable.
2. The directory from which the application loaded.
3. The 32-bit Windows system directory.
4. The Windows directory.
5. The directories that are listed in the parent's PATH environment variable.
Note that it also removes the 16-bit system directory, mostly because there isn't a function to get it. I do not anticipate this being an issue in modern Windows.
## Impact
Removing the current directory should fix CVE's like the one linked above. However, it's possible some Windows users of affected Rust CLI applications have come to expect the old behaviour.
This change could also affect small Windows-only script-like programs that assumed the current directory would be used. The user would need to use `.\file.exe` instead of the bare application name.
This PR could break tests, especially those that test the exact output of error messages (e.g. Cargo) as this does change the error messages is some cases.
[1]: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa#parameters