The `library/std/src/sys_common/net.rs` module is intended to define
common implementations of networking-related APIs across a variety of
platforms that share similar APIs (e.g. Berkeley-style sockets and all).
This module is not included for more fringe targets however such as UEFI
or "unknown" targets to libstd (those classified as `restricted-std`).
Previously the `sys_common/net.rs` file was set up such that an
allow-list indicated it shouldn't be used. This commit inverts the logic
to have an allow-list of when it should be used instead.
The goal of this commit is to make it a bit easier to experiment with a
new Rust target. Currently more esoteric targets are required to get an
exception in this `cfg_if` block to use `crate::sys::net` such as for
unsupported targets. With this inversion of logic only targets which
actually support networking will be listed, where most of those are
lumped under `cfg(unix)`.
Given that this change is likely to cause some breakage for some target
by accident I've attempted to be somewhat robust with this by following
these steps to defining the new predicate for inverted logic.
1. Take all supported targets and filter out all `cfg(unix)` ones as
these should all support `sys_common/net.rs`.
2. Take remaining targets and filter out `cfg(windows)` ones.
3. The remaining dozen-or-so targets were all audited by hand. Mostly
this included `target_os = "hermit"` and `target_os = "solid_asp3"`
which required an allow-list entry, but remaining targets were all
already excluded (didn't use `sys_common/net.rs` so they were left
out.
If this causes breakage it should be relatively easy to fix and I'd be
happy to follow-up with any PRs necessary.
RustHermit publishs a new kernel interface and supports
a common BSD socket layer. By supporting this interface,
the implementation can be harmonized to other operating systems.
To realize this socket layer, the handling of file descriptors
is also harmonized to other operating systems.
Move `ReentrantMutex` to `std::sync`
If I understand #84187 correctly, `sys_common` should not contain platform-independent code, even if it is private.
Extract WStrUnits to sys_common::wstr
This commit extracts WStrUnits from sys::windows::args to sys_common::wstr. This allows using the same structure for other targets which use wtf8 (example UEFI).
This was originally a part of https://github.com/rust-lang/rust/pull/100316
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
This commit extracts WStrUnits from sys::windows::args to sys_common::wstr. This
allows using the same structure for other targets which use wtf8 (example UEFI).
This was originally a part of https://github.com/rust-lang/rust/pull/100316
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
Optimize TLS on Windows
This implements the suggestion in the current TLS code to embed the linked list of destructors in the `StaticKey` structure to save allocations. Additionally, locking is avoided when no destructor needs to be run. By using one Windows-provided `Once` per key instead of a global lock, locking is more finely-grained (this unblocks #100579).
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
Move `std::memchr` to `sys_common`
`std::memchr` is a thin abstraction over the different `memchr` implementations in `sys`, along with documentation and tests. The module is only used internally by `std`, nothing is exported externally. Code like this is exactly what the `sys_common` module is for, so this PR moves it there.
Rework `init` and `cleanup`
This PR reworks the code in `std` that runs before and after `main` and centralizes this code respectively in the functions `init` and `cleanup` in both `sys_common` and `sys`. This makes is easy to see what code is executed during initialization and cleanup on each platform just by looking at e.g. `sys::windows::init`.
Full list of changes:
- new module `rt` in `sys_common` to contain `init` and `cleanup` and the runtime macros.
- `at_exit` and the mechanism to register exit handlers has been completely removed. In practice this was only used for closing sockets on windows and flushing stdout, which have been moved to `cleanup`.
- <s>On windows `alloc` and `net` initialization is now done in `init`, this saves a runtime check in every allocation and network use.</s>