Debug impls for DropElaborators
It's a little weird that these just have a completely empty Debug impl. Now they're `ElaborateDropsCtxt { .. }` and `DropShimElaborator { .. }`.
Ban projecting into SIMD types [MCP838]
Closes https://github.com/rust-lang/compiler-team/issues/838
The actual compiler change here is tiny; there's just a bazillion tests to update.
~~Since I'm sure I've missed some, for now~~
~~r ghost~~
try-job: test-various
try-job: x86_64-gnu-nopt
Give a message with a span on MIR validation error
It was handy to get a source+line link for rust-lang/rust#143833, even if it's just to the function and not necessarily to the statement.
r? mir
Fix `-Ctarget-feature`s getting ignored after `crt-static`
The current behaviour introduced by commit a50a3b8e31 would discard any target features specified after `crt-static` (the only member of `RUSTC_SPECIFIC_FEATURES`). This is because it returned instead of continuing processing the next feature.
I wasn't entirely sure how the regression test should look like, but this one should do. If anyone has some suggestions, I'm happy to learn, it's my first test :)
I've confirmed that the test fails without the fix on `powerpc64le-unknown-linux-musl` and `x86_64-unknown-linux-gnu`.
cc ``@RalfJung``
Allow `Rvalue::Repeat` to return true in `rvalue_creates_operand` too
The conversation in https://github.com/rust-lang/rust/pull/143502#discussion_r2189410911 made be realize how easy this is to handle, since the only possibilty is ZSTs -- everything else ends up with the destination being `LocalKind::Memory` and thus doesn't call `codegen_rvalue_operand` at all.
This gets us perilously close to a world where `rvalue_creates_operand` only ever returns true. (See rust-lang/rust#143860 for more.)
Fixes for LLVM 21
This fixes compatibility issues with LLVM 21 without performing the actual upgrade. Split out from https://github.com/rust-lang/rust/pull/143684.
This fixes three issues:
* Updates the AMDGPU data layout for address space 8.
* Makes emit-arity-indicator.rs a no_core test, so it doesn't fail on non-x86 hosts.
* Explicitly sets the exception model for wasm, as this is no longer implied by `-wasm-enable-eh`.
The conversation in 143502 made be realize how easy this is to handle, since the only possibilty is ZSTs -- everything else ends up with the destination being `LocalKind::Memory` and thus doesn't call `codegen_rvalue_operand` at all.
This gets us perilously close to a world where `rvalue_creates_operand` only ever returns true. I'll try out such a world next :)
Prepare revert of 144013
This is a possible revert for rust-lang/rust#144013 causing issue rust-lang/rust#144168 (imo p-crit) to give us time to figure out a correct fix for rust-lang/rust#144013 without pressure. Feel free to close if it's an easy fix instead: r? `@petrochenkov`
Simplify discriminant codegen for niche-encoded variants which don't wrap across an integer boundary
Inspired by rust-lang/rust#139729, this attempts to be a much-simpler and more-localized change while still making a difference. (Specifically, this does not try to solve the problem with select-sinking, leaving that to be fixed by https://github.com/llvm/llvm-project/issues/134024 -- once it gets released -- instead of in rustc's codegen.)
What this *does* improve is checking for the variant in a 3+ variant enum when that variant is the type providing the niche. Something like `if let Foo::WithBool(_) = ...` previously compiled to `ugt(add(x, -2), 2)`, which is non-trivial to think about because it's depending on the unsigned wrapping to shift the 0/1 up above 2. With this PR it compiles to just `ult(x, 2)`, which is probably what you'd have written yourself if you were doing it by hand to look for "is this byte a bool?".
That's done by leaving most of the codegen alone, but adding a couple new special cases to the `is_niche` check. The default looks at the relative discriminant, but in the common cases where there's no wraparound involved, we can just check the original value, rather than the offsetted one.
The first commit just adds some tests, so the best way to see the effect of this change is to look at the second commit and how it updates the test expectations.
Rename `emit_unless` to `emit_unless_delay`
`emit_unless` is very unintuitive and confusing. The first impression is as if it will only emit if the parameter is true, without the altnative "delay as a bug".
`emit_unless_delay` expresses two things:
1. emit unless the `delay` parameter is true
2. either *emit immediately* or *delay as bug*
r? `@compiler-errors`
Be a bit more careful around exotic cycles in in the inliner
Copied from the comment here: https://github.com/rust-lang/rust/issues/143700#issuecomment-3053810353
---
```rust
#![feature(fn_traits)]
#[inline]
pub fn a() {
FnOnce::call_once(a, ());
FnOnce::call_once(b, ());
}
#[inline]
pub fn b() {
FnOnce::call_once(b, ());
FnOnce::call_once(a, ());
}
```
This should demonstrate the issue. For ease of discussion, I'm gonna call the two fn-def types `{a}` and `{b}`.
When collecting the cyclic local callees in `mir_callgraph_cyclic` for `a`, we first check the first call terminator in `a`. We end up calling process on `<{a} as FnOnce>::call_once`, which ends up visiting `a`'s instance again. This is cyclical. However, we don't end up marking `FnOnce::call_once` as a cyclical def id because it's a foreign item. That's fine.
When visiting the second call terminator in `a`, which is `<{b} as FnOnce>::call_once`, we end up recursing into `b`. We check the first terminator, which is `<{b} as FnOnce>::call_once`, but although that is its own mini cycle, it doesn't consider itself a cycle for the purpose of this query because it doesn't involve the *root*. However, when we visit the *second* terminator in `b`, which is `<{a} as FnOnce>::call_once`, we end up **erroneously** *not* considering that call to be cyclical since we've already inserted it into our set of seen instances, and as a consequence we don't recurse into it. This means that we never collect `b` as recursive.
Do this in the flipped case too, and we end up having two functions which mututally do not consider each other to be recursive participants. This leads to a query cycle.
---
I ended up also renaming some variables so I could more clearly understand their responsibilities in this code. Let me know if the renames are not welcome.
Fixes https://github.com/rust-lang/rust/issues/143700
r? `@cjgillot`