I was trying to output LLVM IR directly to the console:
$ rustc hello.rs --emit=llvm-ir -o /dev/stdout
LLVM ERROR: IO failure on output stream: Bad file descriptor
Now `LLVMRustPrintModule` returns an error, and we print:
error: failed to write LLVM IR to /dev/stdout.hello.7rcbfp3g-cgu.0.rcgu.ll: Permission denied
... which is more informative.
Enable -mergefunc-use-aliases
If the Rust LLVM fork is used, enable the -mergefunc-use-aliases
flag, which will create aliases for merged functions, rather than
inserting a call from one to the other.
A number of codegen tests needed to be adjusted, because functions
that previously fell below the thunk limit are now being merged.
Merging is prevented in various ways now.
I expect that this is going to break something, somewhere, because
it isn't able to deal with aliases properly, but we won't find out
until we try :)
This fixes#52651.
r? @rkruppe
name-anon-globals should always be run at the very end of the pass
pipeline, as optimization passes (in particular mergefunc) may
introduce new anonymous globals.
I believe we did not run into this earlier because it requires the
rather specific combination of a) mergefunc merging two weak functions
b) compilation not using thinlto.
Generalized operand.rs#nontemporal_store and fixed tidy issues
Generalized operand.rs#nontemporal_store's implem even more
With a BuilderMethod trait implemented by Builder for LLVM
Cleaned builder.rs : no more code duplication, no more ValueTrait
Full traitification of builder.rs
If we're going to emit bitcode (through ThinLTOBuffer), then we
need to ensure that anon globals are named. This was already done
after optimization passes, but also has to happen after LTO passes,
as we always emit the final result in a ThinLTO-compatible manner.
Fixes#51947.
This commit updates rustc to wait for all codegen threads to exit before
allowing the main thread to exit. This is a stab in the dark to fix the
mysterious segfaults appearing on #55238, and hopefully we'll see
whether this actually fixes things in practice...
The issue of passing around SIMD types as values between functions has
seen [quite a lot] of [discussion], and although we thought [we fixed
it][quite a lot] it [wasn't]! This PR is a change to rustc to, again,
try to fix this issue.
The fundamental problem here remains the same, if a SIMD vector argument
is passed by-value in LLVM's function type, then if the caller and
callee disagree on target features a miscompile happens. We solve this
by never passing SIMD vectors by-value, but LLVM will still thwart us
with its argument promotion pass to promote by-ref SIMD arguments to
by-val SIMD arguments.
This commit is an attempt to thwart LLVM thwarting us. We, just before
codegen, will take yet another look at the LLVM module and demote any
by-value SIMD arguments we see. This is a very manual attempt by us to
ensure the codegen for a module keeps working, and it unfortunately is
likely producing suboptimal code, even in release mode. The saving grace
for this, in theory, is that if SIMD types are passed by-value across
a boundary in release mode it's pretty unlikely to be performance
sensitive (as it's already doing a load/store, and otherwise
perf-sensitive bits should be inlined).
The implementation here is basically a big wad of C++. It was largely
copied from LLVM's own argument promotion pass, only doing the reverse.
In local testing this...
Closes#50154Closes#52636Closes#54583Closes#55059
[quite a lot]: https://github.com/rust-lang/rust/pull/47743
[discussion]: https://github.com/rust-lang/rust/issues/44367
[wasn't]: https://github.com/rust-lang/rust/issues/50154
The issue of passing around SIMD types as values between functions has
seen [quite a lot] of [discussion], and although we thought [we fixed
it][quite a lot] it [wasn't]! This PR is a change to rustc to, again,
try to fix this issue.
The fundamental problem here remains the same, if a SIMD vector argument
is passed by-value in LLVM's function type, then if the caller and
callee disagree on target features a miscompile happens. We solve this
by never passing SIMD vectors by-value, but LLVM will still thwart us
with its argument promotion pass to promote by-ref SIMD arguments to
by-val SIMD arguments.
This commit is an attempt to thwart LLVM thwarting us. We, just before
codegen, will take yet another look at the LLVM module and demote any
by-value SIMD arguments we see. This is a very manual attempt by us to
ensure the codegen for a module keeps working, and it unfortunately is
likely producing suboptimal code, even in release mode. The saving grace
for this, in theory, is that if SIMD types are passed by-value across
a boundary in release mode it's pretty unlikely to be performance
sensitive (as it's already doing a load/store, and otherwise
perf-sensitive bits should be inlined).
The implementation here is basically a big wad of C++. It was largely
copied from LLVM's own argument promotion pass, only doing the reverse.
In local testing this...
Closes#50154Closes#52636Closes#54583Closes#55059
[quite a lot]: https://github.com/rust-lang/rust/pull/47743
[discussion]: https://github.com/rust-lang/rust/issues/44367
[wasn't]: https://github.com/rust-lang/rust/issues/50154
Allow for opting out of ThinLTO and clean up LTO related cli flag handling.
It turns out that there currently is no way to explicitly disable ThinLTO (except for the nightly-only `-Zthinlto` flag). This PR extends `-C lto` to take `yes` and `no` in addition to `thin` and `fat`. It should be backwards compatible.
It also cleans up how LTO mode selection is handled.
Note that merging the PR in the current state would make the new values for `-C lto` available on the stable channel. I think that would be fine but maybe some team should vote on it.