Do not treat lifetimes from parent items as influencing child items
```rust
struct A;
impl Bar<'static> for A {
const STATIC: &str = "";
// ^ no future incompat warning
}
```
has no future incompat warning, because there is no ambiguity. But
```rust
struct C;
impl Bar<'_> for C {
// ^^ this lifeimte
const STATIC: &'static str = {
struct B;
impl Bar<'static> for B {
const STATIC: &str = "";
// causes ^ to emit a future incompat warning
}
""
};
}
```
had one before this PR, because the impl for `B` (which is just a copy of `A`) thought it was influenced by a lifetime on the impl for `C`.
I double checked all other `lifetime_ribs` iterations and all of them do check for `Item` boundaries. This feels very fragile tho, and ~~I think we should do not even be able to see ribs from parent items, but that's a different refactoring that I'd rather not do at the same time as a bugfix~~. EDIT: ah nevermind, this is needed for improving diagnostics like "use of undeclared lifetime" being "can't use generic parameters from outer item" instead.
r? `@compiler-errors`
Rollup of 6 pull requests
Successful merges:
- #138720 (Specify a concrete stack size in channel tests)
- #139010 (Improve `xcrun` error handling)
- #139021 (std: get rid of pre-Vista fallback code)
- #139025 (Do not trim paths in MIR validator)
- #139026 (Use `abs_diff` where applicable)
- #139030 (saethlin goes on vacation)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `kw::Empty` uses from `hir::Lifetime::ident`
`hir::Lifetime::ident` is sometimes set to `kw::Empty` and it's really confusing. This PR stops that. Helps with #137978.
r? `@lcnr`
Do not trim paths in MIR validator
From my inline comment:
```
// The type checker formats a bunch of strings with type names in it, but these strings
// are not always going to be encountered on the error path since the inliner also uses
// the validator, and there are certain kinds of inlining (even for valid code) that
// can cause validation errors (mostly around where clauses and rigid projections).
```
Fixes https://github.com/rust-lang/rust/issues/138979
r? `@jieyouxu`
Specify a concrete stack size in channel tests
The channel-stack-overflow-issue-102246 regression test fails on platforms with a small default stack size (e.g. Fuchsia, with a default of 256KiB). Update the test to specify an exact stack size for both the sender and receiver operations, to ensure it is platform agnostic.
Set the stack size to less than the total allocation size of the mpsc channel, to continue to prove that the allocation is on the heap.
`hir::Lifetime::ident` currently sometimes uses `kw::Empty` for elided
lifetimes and sometimes uses `kw::UnderscoreLifetime`, and the
distinction is used when creating some error suggestions, e.g. in
`Lifetime::suggestion` and `ImplicitLifetimeFinder::visit_ty`. I found
this *really* confusing, and it took me a while to understand what was
going on.
This commit replaces all uses of `kw::Empty` in `hir::Lifetime::ident`
with `kw::UnderscoreLifetime`. It adds a new field
`hir::Lifetime::is_path_anon` that mostly replaces the old
empty/underscore distinction and makes things much clearer.
Some other notable changes:
- Adds a big comment to `Lifetime` talking about permissable field
values.
- Adds some assertions in `new_named_lifetime` about what ident values
are permissible for the different `LifetimeRes` values.
- Adds a `Lifetime::new` constructor that does some checking to make
sure the `is_elided` and `is_anonymous` states are valid.
- `add_static_impl_trait_suggestion` now looks at `Lifetime::res`
instead of the ident when creating the suggestion. This is the one
case where `is_path_anon` doesn't replace the old empty/underscore
distinction.
- A couple of minor pretty-printing improvements.
Improve suggest construct with literal syntax instead of calling
Closing #138931
When constructing a structure through a format similar to calling a constructor, we can use verbose suggestions to hint at using literal syntax for clearer advice. The case of multiple fields is also considered here, provided that the field has the same number of arguments as CallExpr.
r? compiler
expand: Leave traces when expanding `cfg` attributes
This is the same as https://github.com/rust-lang/rust/pull/138515, but for `cfg(true)` instead of `cfg_attr`.
The difference is that `cfg(true)`s already left "traces" after themselves - the `cfg` attributes themselves, with `expanded_inert_attrs` set to true, with full tokens, available to proc macros.
This is not a reasonably expected behavior, but it could not be removed without a replacement, because a [major rustdoc feature](https://github.com/rust-lang/rfcs/pull/3631) and a number of clippy lints rely on it. This PR implements a replacement.
This needs a crater run, because it changes observable behavior (in an intended way) - proc macros can no longer see expanded `cfg(true)` attributes.
(Some minor unnecessary special casing for `sym::cfg_attr` is also removed in this PR.)
r? `@nnethercote`
Use the correct binder scope for elided lifetimes in assoc consts
Beyond diagnostics this has no real effect, and it's also just about a future incompat lint. But it causes ICEs in some refactorings that I'm doing, so trying to get it out of the way
Collect items referenced from var_debug_info
The collection is limited to full debuginfo builds to match behavior of FunctionCx::compute_per_local_var_debug_info.
Fixes#138942.
Mostly parser: Eliminate code that's been dead / semi-dead since the removal of type ascription syntax
**Disclaimer**: This PR is intended to mostly clean up code as opposed to bringing about behavioral changes. Therefore it doesn't aim to address any of the 'FIXME: remove after a month [dated: 2023-05-02]: "type ascription syntax has been removed, see issue [#]101728"'.
---
By commit:
1. Removes truly dead code:
* Since 1.71 (#109128) `let _ = { f: x };` is a syntax error as opposed to a semantic error which allows the parse-time diagnostic (suggestion) "*struct literal body without path // you might have forgotten […]*" to kick in.
* The analysis-time diagnostic (suggestion) from <=1.70 "*cannot find value \`f\` in this scope // you might have forgotten […]*" is therefore no longer reachable.
2. Updates `is_certainly_not_a_block` to be in line with the current grammar:
* The seq. `{ ident:` is definitely not the start of a block. Before the removal of ty ascr, `{ ident: ty_start` would begin a block expr.
* This shouldn't make more code compile IINM, it should *ultimately* only affect diagnostics.
* For example, `if T { f: () } {}` will now be interpreted as an `if` with struct lit `T { f: () }` as its *condition* (which is banned in the parser anyway) as opposed to just `T` (with the *consequent* being `f : ()` which is also invalid (since 1.71)). The diagnostics are almost the same because we have two separate parse recovery procedures + diagnostics: `StructLiteralNeedingParens` (*invalid struct lit*) before and `StructLiteralNotAllowedHere` (*struct lits aren't allowed here*) now, as you can see from the diff.
* (As an aside, even before this PR, fn `maybe_suggest_struct_literal` should've just used the much older & clearer `StructLiteralNotAllowedHere`)
* NB: This does sadly regress the compiler output for `tests/ui/parser/type-ascription-in-pattern.rs` but that can be fixed in follow-up PRs. It's not super important IMO and a natural consequence.
3. Removes code that's become dead due to the prior commit.
* Basically reverts #106620 + #112475 (without regressing rustc's output!).
* Now the older & more robust parse recovery procedure (cc `StructLiteralNotAllowedHere`) takes care of the cases the removed code used to handle.
* This automatically fixes the suggestions for \[[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=7e2030163b11ee96d17adc3325b01780)\]:
* `if Ty::<i32> { f: K }.m() {}`: `if Ty::<i32> { SomeStruct { f: K } }.m() {}` (broken) → ` if (Ty::<i32> { f: K }).m() {}`
* `if <T as Trait>::Out { f: K::<> }.m() {}`: `if <T as Trait>(::Out { f: K::<> }).m() {}` (broken) → `if (<T as Trait>::Out { f: K::<> }).m() {}`
4. Merge and simplify UI tests pertaining to this issue, so it's easier to add more regression tests like for the two cases mentioned above.
5. Merge UI tests and add the two regression tests.
Best reviewed commit by commit (on request I'll partially squash after approval).
Target modifiers fix for bool flags without value
Fixed support of boolean flags without values: `-Zbool-flag` is now consistent with `-Zbool-flag=true` in another crate.
When flag is explicitly set to default value, target modifier will not be set in crate metainfo (`-Zflag=false` when `false` is a default value for the flag).
Improved error notification when target modifier flag is absent in a crate ("-Zflag unset").
Example:
```
note: `-Zreg-struct-return=true` in this crate is incompatible with unset `-Zreg-struct-return` in dependency `default_reg_struct_return`
```
Fix ui pattern_types test for big-endian platforms
The newly added pattern types validity tests fail on s390x and presumably other big-endian systems, due to print of raw values with padding bytes.
To fix the tests remove the raw output values in the error note by `normalize-stderr`.
Stabilize `#![feature(precise_capturing_in_traits)]`
# Precise capturing (`+ use<>` bounds) in traits - Stabilization Report
Fixes https://github.com/rust-lang/rust/issues/130044.
## Stabilization summary
This report proposes the stabilization of `use<>` precise capturing bounds in return-position impl traits in traits (RPITITs). This completes a missing part of [RFC 3617 "Precise capturing"].
Precise capturing in traits was not ready for stabilization when the first subset was proposed for stabilization (namely, RPITs on free and inherent functions - https://github.com/rust-lang/rust/pull/127672) since this feature has a slightly different implementation, and it hadn't yet been implemented or tested at the time. It is now complete, and the type system implications of this stabilization are detailed below.
## Motivation
Currently, RPITITs capture all in-scope lifetimes, according to the decision made in the ["lifetime capture rules 2024" RFC](https://rust-lang.github.io/rfcs/3498-lifetime-capture-rules-2024.html#return-position-impl-trait-in-trait-rpitit). However, traits can be designed such that some lifetimes in arguments may not want to be captured. There is currently no way to express this.
## Major design decisions since the RFC
No major decisions were made. This is simply an extension to the RFC that was understood as a follow-up from the original stabilization.
## What is stabilized?
Users may write `+ use<'a, T>` bounds on their RPITITs. This conceptually modifies the desugaring of the RPITIT to omit the lifetimes that we would copy over from the method. For example,
```rust
trait Foo {
fn method<'a>(&'a self) -> impl Sized;
// ... desugars to something like:
type RPITIT_1<'a>: Sized;
fn method_desugared<'a>(&'a self) -> Self::RPITIT_1<'a>;
// ... whereas with precise capturing ...
fn precise<'a>(&'a self) -> impl Sized + use<Self>;
// ... desugars to something like:
type RPITIT_2: Sized;
fn precise_desugared<'a>(&'a self) -> Self::RPITIT_2;
}
```
And thus the GAT doesn't name `'a`. In the compiler internals, it's not implemented exactly like this, but not in a way that users should expect to be able to observe.
#### Limitations on what generics must be captured
Currently, we require that all generics from the trait (including the `Self`) type are captured. This is because the generics from the trait are required to be *invariant* in order to do associated type normalization.
And like regular precise capturing bounds, all type and const generics in scope must be captured.
Thus, only the in-scope method lifetimes may be relaxed with this syntax today.
## What isn't stabilized? (a.k.a. potential future work)
See section above. Relaxing the requirement to capture all type and const generics in scope may be relaxed when https://github.com/rust-lang/rust/issues/130043 is implemented, however it currently interacts with some underexplored corners of the type system (e.g. unconstrained type bivariance) so I don't expect it to come soon after.
## Implementation summary
This functionality is implemented analogously to the way that *opaque type* precise capturing works.
Namely, we currently use *variance* to model the capturedness of lifetimes. However, since RPITITs are anonymous GATs instead of opaque types, we instead modify the type relation of GATs to consider variances for RPITITs (along with opaque types which it has done since https://github.com/rust-lang/rust/pull/103491).
30f168ef81/compiler/rustc_middle/src/ty/util.rs (L954-L976)30f168ef81/compiler/rustc_type_ir/src/relate.rs (L240-L244)
Using variance to model capturedness is an implementation detail, and in the future it would be desirable if opaques and RPITITs simply did not include the uncaptured lifetimes in their generics. This can be changed in a forwards-compatible way, and almost certainly would not be observable by users (at least not negatively, since it may indeed fix some bugs along the way).
## Tests
* Test that the lifetime isn't actually captured: `tests/ui/impl-trait/precise-capturing/rpitit.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-outlives.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-outlives-2.rs`.
* Technical test for variance computation: `tests/ui/impl-trait/in-trait/variance.rs`.
* Test that you must capture all trait generics: `tests/ui/impl-trait/precise-capturing/forgot-to-capture-type.rs`.
* Test that you cannot capture more than what the trait specifies: `tests/ui/impl-trait/precise-capturing/rpitit-captures-more-method-lifetimes.rs` and `tests/ui/impl-trait/precise-capturing/rpitit-impl-captures-too-much.rs`.
* Undercapturing (refinement) lint: `tests/ui/impl-trait/in-trait/refine-captures.rs`.
### What other unstable features may be exposed by this feature?
I don't believe that this exposes any new unstable features indirectly.
## Remaining bugs and open issues
Not aware of any open issues or bugs.
## Tooling support
Rustfmt: ✅ Supports formatting `+ use<>` everywhere.
Clippy: ✅ No support needed, unless specific clippy lints are impl'd to care for precise capturing itself.
Rustdoc: ✅ Rendering `+ use<>` precise capturing bounds is supported.
Rust-analyzer: ✅ Parser support, and then lifetime support isn't needed https://github.com/rust-lang/rust/pull/138128#issuecomment-2705292494 (previous: ~~❓ There is parser support, but I am unsure of rust-analyzer's level of support for RPITITs in general.~~)
## History
Tracking issue: https://github.com/rust-lang/rust/issues/130044
* https://github.com/rust-lang/rust/pull/131033
* https://github.com/rust-lang/rust/pull/132795
* https://github.com/rust-lang/rust/pull/136554
add FCW to warn about wasm ABI transition
See https://github.com/rust-lang/rust/issues/122532 for context: the "C" ABI on wasm32-unk-unk will change. The goal of this lint is to warn about any function definition and calls whose behavior will be affected by the change. My understanding is the following:
- scalar arguments are fine
- including 128 bit types, they get passed as two `i64` arguments in both ABIs
- `repr(C)` structs (recursively) wrapping a single scalar argument are fine (unless they have extra padding due to over-alignment attributes)
- all return values are fine
`@bjorn3` `@alexcrichton` `@Manishearth` is that correct?
I am making this a "show up in future compat reports" lint to maximize the chances people become aware of this. OTOH this likely means warnings for most users of Diplomat so maybe we shouldn't do this?
IIUC, wasm-bindgen should be unaffected by this lint as they only pass scalar types as arguments.
Tracking issue: https://github.com/rust-lang/rust/issues/138762
Transition plan blog post: https://github.com/rust-lang/blog.rust-lang.org/pull/1531
try-job: dist-various-2
Rollup of 8 pull requests
Successful merges:
- #135745 (Recognise new IPv6 non-global range from IETF RFC 9602)
- #137247 (cg_llvm: Reduce the visibility of types, modules and using declarations in `rustc_codegen_llvm`.)
- #138317 (privacy: Visit types and traits in impls in type privacy lints)
- #138581 (Abort in deadlock handler if we fail to get a query map)
- #138776 (coverage: Separate span-extraction from unexpansion)
- #138886 (Fix autofix for `self` and `self as …` in `unused_imports` lint)
- #138924 (Reduce `kw::Empty` usage, part 3)
- #138929 (Visitors track whether an assoc item is in a trait impl or an inherent impl)
r? `@ghost`
`@rustbot` modify labels: rollup
Fix autofix for `self` and `self as …` in `unused_imports` lint
This fixes two problems with the autofixes for the `unused_imports` lint:
- `use std::collections::{HashMap, self as coll};` would suggest, when `HashMap` is unused, the incorrect `use std::collections::self as coll;` which does not compile.
- `use std::borrow::{self, Cow};` would suggest, when `self` is unused, `use std::borrow::{Cow};`, which contains unnecessary brackets.
The first problem was reported in rust-lang/rust-clippy#14450, the second found while fixing the first one.
Fix#133750
(thanks to `@richardsamuels` for spotting the duplicate)
compiletest: Support matching on diagnostics without a span
Using `//~? ERROR my message` on any line of the test.
The new checks are exhaustive, like all other `//~` checks, and unlike the `error-pattern` directive that is sometimes used now to check for span-less diagnostics.
This will allow to eliminate most on `error-pattern` directives in compile-fail tests (except those that are intentionally imprecise due to platform-specific diagnostics).
I didn't migrate any of `error-pattern`s in this PR though, except those where the migration was necessary for the tests to pass.
Fix/tweak some tests in new solver
Bunch of miscellaneous new solver tweaks that I found from the failing tests. Can split these out, but they all seemed small enough to not warrant separate PRs.
r? lcnr