The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.
Begin to implement type system layer of unsafe binders
Mostly TODOs, but there's a lot of match arms that are basically just noops so I wanted to split these out before I put up the MIR lowering/projection part of this logic.
r? oli-obk
Tracking:
- https://github.com/rust-lang/rust/issues/130516
Point at lint name instead of whole attr for gated lints
```
warning: unknown lint: `test_unstable_lint`
--> $DIR/warn-unknown-unstable-lint-inline.rs:4:10
|
LL | #![allow(test_unstable_lint, another_unstable_lint)]
| ^^^^^^^^^^^^^^^^^^
|
= note: the `test_unstable_lint` lint is unstable
= help: add `#![feature(test_unstable_lint)]` to the crate attributes to enable
= note: this compiler was built on YYYY-MM-DD; consider upgrading it if it is out of date
note: the lint level is defined here
--> $DIR/warn-unknown-unstable-lint-inline.rs:3:9
|
LL | #![warn(unknown_lints)]
| ^^^^^^^^^^^^^
warning: unknown lint: `test_unstable_lint`
--> $DIR/warn-unknown-unstable-lint-inline.rs:4:29
|
LL | #![allow(test_unstable_lint, another_unstable_lint)]
| ^^^^^^^^^^^^^^^^^^^^^
|
= note: the `another_unstable_lint` lint is unstable
= help: add `#![feature(another_unstable_lint)]` to the crate attributes to enable
= note: this compiler was built on YYYY-MM-DD; consider upgrading it if it is out of date
```
This is particularly relevant when there are multiple lints in the same `warn` attribute. Pointing at the smaller span makes it clearer which one the warning is complaining about.
```
warning: unknown lint: `test_unstable_lint`
--> $DIR/warn-unknown-unstable-lint-inline.rs:4:10
|
LL | #![allow(test_unstable_lint, another_unstable_lint)]
| ^^^^^^^^^^^^^^^^^^
|
= note: the `test_unstable_lint` lint is unstable
= help: add `#![feature(test_unstable_lint)]` to the crate attributes to enable
= note: this compiler was built on YYYY-MM-DD; consider upgrading it if it is out of date
note: the lint level is defined here
--> $DIR/warn-unknown-unstable-lint-inline.rs:3:9
|
LL | #![warn(unknown_lints)]
| ^^^^^^^^^^^^^
warning: unknown lint: `test_unstable_lint`
--> $DIR/warn-unknown-unstable-lint-inline.rs:4:29
|
LL | #![allow(test_unstable_lint, another_unstable_lint)]
| ^^^^^^^^^^^^^^^^^^^^^
|
= note: the `test_unstable_lint` lint is unstable
= help: add `#![feature(test_unstable_lint)]` to the crate attributes to enable
= note: this compiler was built on YYYY-MM-DD; consider upgrading it if it is out of date
note: the lint level is defined here
--> $DIR/warn-unknown-unstable-lint-inline.rs:3:9
|
LL | #![warn(unknown_lints)]
| ^^^^^^^^^^^^^
```
This is particularly relevant when there are multiple lints in the same `warn` attribute. Pointing at the smaller span makes it clearer which one the warning is complaining about.
(Re-)Implement `impl_trait_in_bindings`
This reimplements the `impl_trait_in_bindings` feature for local bindings.
"`impl Trait` in bindings" serve as a form of *trait* ascription, where the type basically functions as an infer var but additionally registering the `impl Trait`'s trait bounds for the infer type. These trait bounds can be used to enforce that predicates hold, and can guide inference (e.g. for closure signature inference):
```rust
let _: impl Fn(&u8) -> &u8 = |x| x;
```
They are implemented as an additional set of bounds that are registered when the type is lowered during typeck, and then these bounds are tied to a given `CanonicalUserTypeAscription` for borrowck. We enforce these `CanonicalUserTypeAscription` bounds during borrowck to make sure that the `impl Trait` types are sensitive to lifetimes:
```rust
trait Static: 'static {}
impl<T> Static for T where T: 'static {}
let local = 1;
let x: impl Static = &local;
//~^ ERROR `local` does not live long enough
```
r? oli-obk
cc #63065
---
Why can't we just use TAIT inference or something? Well, TAITs in bodies have the problem that they cannot reference lifetimes local to a body. For example:
```rust
type TAIT = impl Display;
let local = 0;
let x: TAIT = &local;
//~^ ERROR `local` does not live long enough
```
That's because TAITs requires us to do *opaque type inference* which is pretty strict, since we need to remap all of the lifetimes of the hidden type to universal regions. This is simply not possible here.
---
I consider this part of the "impl trait everywhere" experiment. I'm not certain if this needs yet another lang team experiment.
Rollup of 8 pull requests
Successful merges:
- #134252 (Fix `Path::is_absolute` on Hermit)
- #134254 (Fix building `std` for Hermit after `c_char` change)
- #134255 (Update includes in `/library/core/src/error.rs`.)
- #134261 (Document the symbol Visibility enum)
- #134262 (Arbitrary self types v2: adjust diagnostic.)
- #134265 (Rename `ty_def_id` so people will stop using it by accident)
- #134271 (Arbitrary self types v2: better feature gate test)
- #134274 (Add check-pass test for `&raw`)
r? `@ghost`
`@rustbot` modify labels: rollup
Arbitrary self types v2: better feature gate test
Slight improvement to the test for the `arbitrary_self_types_pointers` feature gate, to ensure it's independent of the `arbitrary_self_types` gate.
Part of #44874
r? `@wesleywiser`
Arbitrary self types v2: adjust diagnostic.
The recently landed PR #132961 to adjust arbitrary self types was a bit overenthusiastic, advising folks to use the new Receiver trait even before it's been stabilized. Revert to the older wording of the lint in such cases.
Tracking issue #44874
r? ``@wesleywiser``
Tweak multispan rendering to reduce output length
Consider comments and bare delimiters the same as an "empty line" for purposes of hiding rendered code output of long multispans. This results in more aggressive shortening of rendered output without losing too much context, specially in `*.stderr` tests that have "hidden" comments. We do that check not only on the first 4 lines of the multispan, but now also on the previous to last line as well.
Slight improvement to the test for the arbitrary_self_types_pointers
feature gate, to ensure it's independent of the arbitrary_self_types
gate.
Part of #44874
Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
The recently landed PR to adjust arbitrary self types was a bit
overenthusiastic, advising folks to use the new Receiver trait even
before it's been stabilized. Revert to the older wording of the lint in
such cases.
Stabilize async closures (RFC 3668)
# Async Closures Stabilization Report
This report proposes the stabilization of `#![feature(async_closure)]` ([RFC 3668](https://rust-lang.github.io/rfcs/3668-async-closures.html)). This is a long-awaited feature that increases the expressiveness of the Rust language and fills a pressing gap in the async ecosystem.
## Stabilization summary
* You can write async closures like `async || {}` which return futures that can borrow from their captures and can be higher-ranked in their argument lifetimes.
* You can express trait bounds for these async closures using the `AsyncFn` family of traits, analogous to the `Fn` family.
```rust
async fn takes_an_async_fn(f: impl AsyncFn(&str)) {
futures::join(f("hello"), f("world")).await;
}
takes_an_async_fn(async |s| { other_fn(s).await }).await;
```
## Motivation
Without this feature, users hit two major obstacles when writing async code that uses closures and `Fn` trait bounds:
- The inability to express higher-ranked async function signatures.
- That closures cannot return futures that borrow from the closure captures.
That is, for the first, we cannot write:
```rust
// We cannot express higher-ranked async function signatures.
async fn f<Fut>(_: impl for<'a> Fn(&'a u8) -> Fut)
where
Fut: Future<Output = ()>,
{ todo!() }
async fn main() {
async fn g(_: &u8) { todo!() }
f(g).await;
//~^ ERROR mismatched types
//~| ERROR one type is more general than the other
}
```
And for the second, we cannot write:
```rust
// Closures cannot return futures that borrow closure captures.
async fn f<Fut: Future<Output = ()>>(_: impl FnMut() -> Fut)
{ todo!() }
async fn main() {
let mut xs = vec![];
f(|| async {
async fn g() -> u8 { todo!() }
xs.push(g().await);
});
//~^ ERROR captured variable cannot escape `FnMut` closure body
}
```
Async closures provide a first-class solution to these problems.
For further background, please refer to the [motivation section](https://rust-lang.github.io/rfcs/3668-async-closures.html#motivation) of the RFC.
## Major design decisions since RFC
The RFC had left open the question of whether we would spell the bounds syntax for async closures...
```rust
// ...as this...
fn f() -> impl AsyncFn() -> u8 { todo!() }
// ...or as this:
fn f() -> impl async Fn() -> u8 { todo!() }
```
We've decided to spell this as `AsyncFn{,Mut,Once}`.
The `Fn` family of traits is special in many ways. We had originally argued that, due to this specialness, that perhaps the `async Fn` syntax could be adopted without having to decide whether a general `async Trait` mechanism would ever be adopted. However, concerns have been raised that we may not want to use `async Fn` syntax unless we would pursue more general trait modifiers. Since there remain substantial open questions on those -- and we don't want to rush any design work there -- it makes sense to ship this needed feature using the `AsyncFn`-style bounds syntax.
Since we would, in no case, be shipping a generalized trait modifier system anytime soon, we'll be continuing to see `AsyncFoo` traits appear across the ecosystem regardless. If we were to ever later ship some general mechanism, we could at that time manage the migration from `AsyncFn` to `async Fn`, just as we'd be enabling and managing the migration of many other traits.
Note that, as specified in RFC 3668, the details of the `AsyncFn*` traits are not exposed and they can only be named via the "parentheses sugar". That is, we can write `T: AsyncFn() -> u8` but not `T: AsyncFn<Output = u8>`.
Unlike the `Fn` traits, we cannot project to the `Output` associated type of the `AsyncFn` traits. That is, while we can write...
```rust
fn f<F: Fn() -> u8>(_: F::Output) {}
```
...we cannot write:
```rust
fn f<F: AsyncFn() -> u8>(_: F::Output) {}
//~^ ERROR
```
The choice of `AsyncFn{,Mut,Once}` bounds syntax obviates, for our purposes here, another question decided after that RFC, which was how to order bound modifiers such as `for<'a> async Fn()`.
Other than answering the open question in the RFC on syntax, nothing has changed about the design of this feature between RFC 3668 and this stabilization.
## What is stabilized
For those interested in the technical details, please see [the dev guide section](https://rustc-dev-guide.rust-lang.org/coroutine-closures.html) I authored.
#### Async closures
Other than in how they solve the problems described above, async closures act similarly to closures that return async blocks, and can have parts of their signatures specified:
```rust
// They can have arguments annotated with types:
let _ = async |_: u8| { todo!() };
// They can have their return types annotated:
let _ = async || -> u8 { todo!() };
// They can be higher-ranked:
let _ = async |_: &str| { todo!() };
// They can capture values by move:
let x = String::from("hello, world");
let _ = async move || do_something(&x).await };
```
When called, they return an anonymous future type corresponding to the (not-yet-executed) body of the closure. These can be awaited like any other future.
What distinguishes async closures is that, unlike closures that return async blocks, the futures returned from the async closure can capture state from the async closure. For example:
```rust
let vec: Vec<String> = vec![];
let closure = async || {
vec.push(ready(String::from("")).await);
};
```
The async closure captures `vec` with some `&'closure mut Vec<String>` which lives until the closure is dropped. Every call to `closure()` returns a future which reborrows that mutable reference `&'call mut Vec<String>` which lives until the future is dropped (e.g. it is `await`ed).
As another example:
```rust
let string: String = "Hello, world".into();
let closure = async move || {
ready(&string).await;
};
```
The closure is marked with `move`, which means it takes ownership of the string by *value*. The future that is returned by calling `closure()` returns a future which borrows a reference `&'call String` which lives until the future is dropped (e.g. it is `await`ed).
#### Async fn trait family
To support the lending capability of async closures, and to provide a first-class way to express higher-ranked async closures, we introduce the `AsyncFn*` family of traits. See the [corresponding section](https://rust-lang.github.io/rfcs/3668-async-closures.html#asyncfn) of the RFC.
We stabilize naming `AsyncFn*` via the "parenthesized sugar" syntax that normal `Fn*` traits can be named. The `AsyncFn*` trait can be used anywhere a `Fn*` trait bound is allowed, such as:
```rust
/// In return-position impl trait:
fn closure() -> impl AsyncFn() { async || {} }
/// In trait bounds:
trait Foo<F>: Sized
where
F: AsyncFn()
{
fn new(f: F) -> Self;
}
/// in GATs:
trait Gat {
type AsyncHasher<T>: AsyncFn(T) -> i32;
}
```
Other than using them in trait bounds, the definitions of these traits are not directly observable, but certain aspects of their behavior can be indirectly observed such as the fact that:
* `AsyncFn::async_call` and `AsyncFnMut::async_call_mut` return a future which is *lending*, and therefore borrows the `&self` lifetime of the callee.
```rust
fn by_ref_call(c: impl AsyncFn()) {
let fut = c();
drop(c);
// ^ Cannot drop `c` since it is borrowed by `fut`.
}
```
* `AsyncFnOnce::async_call_once` returns a future that takes ownership of the callee.
```rust
fn by_ref_call(c: impl AsyncFnOnce()) {
let fut = c();
let _ = c();
// ^ Cannot call `c` since calling it takes ownership the callee.
}
```
* All currently-stable callable types (i.e., closures, function items, function pointers, and `dyn Fn*` trait objects) automatically implement `AsyncFn*() -> T` if they implement `Fn*() -> Fut` for some output type `Fut`, and `Fut` implements `Future<Output = T>`.
* This is to make sure that `AsyncFn*()` trait bounds have maximum compatibility with existing callable types which return futures, such as async function items and closures which return boxed futures.
* For now, this only works currently for *concrete* callable types -- for example, a argument-position impl trait like `impl Fn() -> impl Future<Output = ()>` does not implement `AsyncFn()`, due to the fact that a `AsyncFn`-if-`Fn` blanket impl does not exist in reality. This may be relaxed in the future. Users can work around this by wrapping their type in an async closure and calling it. I expect this to not matter much in practice, as users are encouraged to write `AsyncFn` bounds directly.
```rust
fn is_async_fn(_: impl AsyncFn(&str)) {}
async fn async_fn_item(s: &str) { todo!() }
is_async_fn(s);
// ^^^ This works.
fn generic(f: impl Fn() -> impl Future<Output = ()>) {
is_async_fn(f);
// ^^^ This does not work (yet).
}
```
#### The by-move future
When async closures are called with `AsyncFn`/`AsyncFnMut`, they return a coroutine that borrows from the closure. However, when they are called via `AsyncFnOnce`, we consume that closure, and cannot return a coroutine that borrows from data that is now dropped.
To work around around this limitation, we synthesize a separate future type for calling the async closure via `AsyncFnOnce`.
This future executes identically to the by-ref future returned from calling the async closure, except for the fact that it has a different set of captures, since we must *move* the captures from the parent async into the child future.
#### Interactions between async closures and the `Fn*` family of traits
Async closures always implement `FnOnce`, since they always can be called once. They may also implement `Fn` or `FnMut` if their body is compatible with the calling mode (i.e. if they do not mutate their captures, or they do not capture their captures, respectively) and if the future returned by the async closure is not *lending*.
```rust
let id = String::new();
let mapped: Vec</* impl Future */> =
[/* elements */]
.into_iter()
// `Iterator::map` takes an `impl FnMut`
.map(async |element| {
do_something(&id, element).await;
})
.collect();
```
See [the dev guide](https://rustc-dev-guide.rust-lang.org/coroutine-closures.html#follow-up-when-do-async-closures-implement-the-regular-fn-traits) for a detailed explanation for the situations where this may not be possible due to the lending nature of async closures.
#### Other notable features of async closures shared with synchronous closures
* Async closures are `Copy` and/or `Clone` if their captures are `Copy`/`Clone`.
* Async closures do closure signature inference: If an async closure is passed to a function with a `AsyncFn` or `Fn` trait bound, we can eagerly infer the argument types of the closure. More details are provided in [the dev guide](https://rustc-dev-guide.rust-lang.org/coroutine-closures.html#closure-signature-inference).
#### Lints
This PR also stabilizes the `CLOSURE_RETURNING_ASYNC_BLOCK` lint as an `allow` lint. This lints on "old-style" async closures:
```rust
#![warn(closure_returning_async_block)]
let c = |x: &str| async {};
```
We should encourage users to use `async || {}` where possible. This lint remains `allow` and may be refined in the future because it has a few false positives (namely, see: "Where do we expect rewriting `|| async {}` into `async || {}` to fail?")
An alternative that could be made at the time of stabilization is to put this lint behind another gate, so we can decide to stabilize it later.
## What isn't stabilized (aka, potential future work)
#### `async Fn*()` bound syntax
We decided to stabilize async closures without the `async Fn*()` bound modifier syntax. The general direction of this syntax and how it fits is still being considered by T-lang (e.g. in [RFC 3710](https://github.com/rust-lang/rfcs/pull/3710)).
#### Naming the futures returned by async closures
This stabilization PR does not provide a way of naming the futures returned by calling `AsyncFn*`.
Exposing a stable way to refer to these futures is important for building async-closure-aware combinators, and will be an important future step.
#### Return type notation-style bounds for async closures
The RFC described an RTN-like syntax for putting bounds on the future returned by an async closure:
```rust
async fn foo(x: F) -> Result<()>
where
F: AsyncFn(&str) -> Result<()>,
// The future from calling `F` is `Send` and `'static`.
F(..): Send + 'static,
{}
```
This stabilization PR does not stabilize that syntax yet, which remains unimplemented (though will be soon).
#### `dyn AsyncFn*()`
`AsyncFn*` are not dyn-compatible yet. This will likely be implemented in the future along with the dyn-compatibility of async fn in trait, since the same issue (dealing with the future returned by a call) applies there.
## Tests
Tests exist for this feature in [`tests/ui/async-await/async-closures`](5b54286640/tests/ui/async-await/async-closures).
<details>
<summary>A selected set of tests:</summary>
* Lending behavior of async closures
* `tests/ui/async-await/async-closures/mutate.rs`
* `tests/ui/async-await/async-closures/captures.rs`
* `tests/ui/async-await/async-closures/precise-captures.rs`
* `tests/ui/async-await/async-closures/no-borrow-from-env.rs`
* Async closures may be higher-ranked
* `tests/ui/async-await/async-closures/higher-ranked.rs`
* `tests/ui/async-await/async-closures/higher-ranked-return.rs`
* Async closures may implement `Fn*` traits
* `tests/ui/async-await/async-closures/is-fn.rs`
* `tests/ui/async-await/async-closures/implements-fnmut.rs`
* Async closures may be cloned
* `tests/ui/async-await/async-closures/clone-closure.rs`
* Ownership of the upvars when `AsyncFnOnce` is called
* `tests/ui/async-await/async-closures/drop.rs`
* `tests/ui/async-await/async-closures/move-is-async-fn.rs`
* `tests/ui/async-await/async-closures/force-move-due-to-inferred-kind.rs`
* `tests/ui/async-await/async-closures/force-move-due-to-actually-fnonce.rs`
* Closure signature inference
* `tests/ui/async-await/async-closures/signature-deduction.rs`
* `tests/ui/async-await/async-closures/sig-from-bare-fn.rs`
* `tests/ui/async-await/async-closures/signature-inference-from-two-part-bound.rs`
</details>
## Remaining bugs and open issues
* https://github.com/rust-lang/rust/issues/120694 tracks moving onto more general `LendingFn*` traits. No action needed, since it's not observable.
* https://github.com/rust-lang/rust/issues/124020 - Polymorphization ICE. Polymorphization needs to be heavily reworked. No action needed.
* https://github.com/rust-lang/rust/issues/127227 - Tracking reworking the way that rustdoc re-sugars bounds.
* The part relevant to to `AsyncFn` is fixed by https://github.com/rust-lang/rust/pull/132697.
## Where do we expect rewriting `|| async {}` into `async || {}` to fail?
* Fn pointer coercions
* Currently, it is not possible to coerce an async closure to an fn pointer like regular closures can be. This functionality may be implemented in the future.
```rust
let x: fn() -> _ = async || {};
```
* Argument capture
* Like async functions, async closures always capture their input arguments. This is in contrast to something like `|t: T| async {}`, which doesn't capture `t` unless it is used in the async block. This may affect the `Send`-ness of the future or affect its outlives.
```rust
fn needs_send_future(_: impl Fn(NotSendArg) -> Fut)
where
Fut: Future<Output = ()>,
{}
needs_send_future(async |_| {});
```
## History
#### Important feature history
- https://github.com/rust-lang/rust/pull/51580
- https://github.com/rust-lang/rust/pull/62292
- https://github.com/rust-lang/rust/pull/120361
- https://github.com/rust-lang/rust/pull/120712
- https://github.com/rust-lang/rust/pull/121857
- https://github.com/rust-lang/rust/pull/123660
- https://github.com/rust-lang/rust/pull/125259
- https://github.com/rust-lang/rust/pull/128506
- https://github.com/rust-lang/rust/pull/127482
## Acknowledgements
Thanks to `@oli-obk` for reviewing the bulk of the work for this feature. Thanks to `@nikomatsakis` for his design blog posts which generated interest for this feature, `@traviscross` for feedback and additions to this stabilization report. All errors are my own.
r? `@ghost`
Consider comments and bare delimiters the same as an "empty line" for purposes of hiding rendered code output of long multispans. This results in more aggressive shortening of rendered output without losing too much context, specially in `*.stderr` tests that have "hidden" comments.
Arbitrary self types v2: main compiler changes
This is the main PR in a series of PRs related to Arbitrary Self Types v2, tracked in #44874. Specifically this is step 7 of the plan [described here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688), for [RFC 3519](https://github.com/rust-lang/rfcs/pull/3519).
Overall this PR:
* Switches from the `Deref` trait to the new `Receiver` trait when the unstable `arbitrary_self_types` feature is enabled (the simple bit)
* Introduces new algorithms to spot "shadowing"; that is, the case where a newly-added method in an outer smart pointer might end up overriding a pre-existing method in the pointee (the complex bit). Most of this bit was explored in [this earlier perf-testing PR](https://github.com/rust-lang/rust/pull/127812#issuecomment-2236911900).
* Lots of tests
This should not break compatibility for:
* Stable users, where it should have no effect
* Users of the existing `arbitrary_self_types` feature (because we implement `Receiver` for `T: Deref`) _unless_ those folks have added methods which may shadow methods in inner types, which we no longer want to allow
Subsequent PRs will add better diagnostics.
It's probably easiest to review this commit-by-commit.
r? `@wesleywiser`
In this new version of Arbitrary Self Types, we no longer use the Deref trait
exclusively when working out which self types are valid. Instead, we follow a
chain of Receiver traits. This enables methods to be called on smart pointer
types which fundamentally cannot support Deref (for instance because they are
wrappers for pointers that don't follow Rust's aliasing rules).
This includes:
* Changes to tests appropriately
* New tests for:
* The basics of the feature
* Ensuring lifetime elision works properly
* Generic Receivers
* A copy of the method subst test enhanced with Receiver
This is really the heart of the 'arbitrary self types v2' feature, and
is the most critical commit in the current PR.
Subsequent commits are focused on:
* Detecting "shadowing" problems, where a smart pointer type can hide
methods in the pointee.
* Diagnostics and cleanup.
Naming: in this commit, the "Autoderef" type is modified so that it no
longer solely focuses on the "Deref" trait, but can now consider the
"Receiver" trait instead. Should it be renamed, to something like
"TraitFollower"? This was considered, but rejected, because
* even in the Receiver case, it still considers built-in derefs
* the name Autoderef is short and snappy.
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly