Do not mix normalized and unnormalized caller bounds when constructing param-env for `receiver_is_dispatchable`
See comments in code and in test I added.
r? `@BoxyUwU` since you reviewed the last PR, or reassign
Fixes#138937
tests: use minicore more
minicore makes it much easier to add new language items to all of the existing `no_core` tests.
Most of the remaining tests that *could* use minicore either fail because..
1. LLVM IR output changes and doesn't pass the test as written. I didn't look into these further.
2. The test has revisions w/ different compilation flags, expecting some to fail, and when using minicore, minicore is compiled with those flags and fails in the expected way because of the flags rather than the test, and that's considered a failure.
But these tests can be changed and make adding new language items a lot easier.
r? ```@jieyouxu```
```
error[E0610]: `{integer}` is a primitive type and therefore doesn't have fields
--> $DIR/attempted-access-non-fatal.rs:7:15
|
LL | let _ = 2.l;
| ^
|
help: if intended to be a floating point literal, consider adding a `0` after the period and a `f64` suffix
|
LL - let _ = 2.l;
LL + let _ = 2.0f64;
|
```
Implement `ByteStr` and `ByteString` types
Approved ACP: https://github.com/rust-lang/libs-team/issues/502
Tracking issue: https://github.com/rust-lang/rust/issues/134915
These types represent human-readable strings that are conventionally,
but not always, UTF-8. The `Debug` impl prints non-UTF-8 bytes using
escape sequences, and the `Display` impl uses the Unicode replacement
character.
This is a minimal implementation of these types and associated trait
impls. It does not add any helper methods to other types such as `[u8]`
or `Vec<u8>`.
I've omitted a few implementations of `AsRef`, `AsMut`, and `Borrow`,
when those would be the second implementation for a type (counting the
`T` impl), to avoid potential inference failures. We can attempt to add
more impls later in standalone commits, and run them through crater.
In addition to the `bstr` feature, I've added a `bstr_internals` feature
for APIs provided by `core` for use by `alloc` but not currently
intended for stabilization.
This API and its implementation are based *heavily* on the `bstr` crate
by Andrew Gallant (`@BurntSushi).`
r? `@BurntSushi`
`best_blame_constraint`: Blame better constraints when the region graph has cycles from invariance or `'static`
This fixes#132749 by changing which constraint is blamed for region errors in several cases. `best_blame_constraint` had a heuristic that tried to pinpoint the constraint causing an error by filtering out any constraints where the outliving region is unified with the ultimate target region being outlived. However, it used the SCCs of the region graph to do this, which is unreliable; in particular, if the target region is `'static`, or if there are cycles from the presence of invariant types, it was skipping over the constraints it should be blaming. As is the case in that issue, this could lead to confusing diagnostics. The simplest fix seems to work decently, judging by test stderr: this makes `best_blame_constraint` no longer filter constraints by their outliving region's SCC.
There are admittedly some quirks in the test output. In many cases, subdiagnostics that depend on the particular constraint being blamed have either started or stopped being emitted. After starting at this for quite a while, I think anything too fickle about whether it outputs based on the particular constraint being blamed should instead be looking at the constraint path as a whole, similar to what's done for [the placeholder-from-predicate note](https://github.com/rust-lang/rust/compare/master...dianne:rust:better-blame-constraints-for-static#diff-3c0de6462469af483c9ecdf2c4b00cb26192218ef2d5c62a0fde75107a74caaeR506).
Very many tests involving invariant types gained a note pointing out the types' invariance, but in a few cases it was lost. A particularly illustrative example is [tests/ui/lifetimes/copy_modulo_regions.stderr](https://github.com/rust-lang/rust/compare/master...dianne:rust:better-blame-constraints-for-static?expand=1#diff-96e1f8b29789b3c4ce2f77a5e0fba248829b97ef9d1ce39e7d2b4aa57b2cf4f0); I'd argue the new constraint is a better one to blame, but it lacks the variance diagnostic information that's elsewhere in the constraint path. If desired, I can try making that note check the whole path rather than just the blamed constraint.
The subdiagnostic [`BorrowExplanation::add_object_lifetime_default_note`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_borrowck/diagnostics/explain_borrow/enum.BorrowExplanation.html#method.add_object_lifetime_default_note) depends on a `Cast` being blamed, so [a special case](364ca7f99c) was necessary to keep it from disappearing from tests specifically testing for it. However, see the FIXME comment in that commit; I think the special case should be removed once that subdiagnostic works properly, but it's nontrivial enough to warrant a separate PR. Incidentally, this removes the note from a test where it was being added erroneously: in [tests/ui/borrowck/two-phase-surprise-no-conflict.stderr](https://github.com/rust-lang/rust/compare/master...dianne:rust:better-blame-constraints-for-static?expand=1#diff-8cf085af8203677de6575a45458c9e6b03412a927df879412adec7e4f7ff5e14), the object lifetime is explicitly provided and it's not `'static`.
Normalize each signature input/output in `typeck_with_fallback` with its own span
Applies the same hack as #106582 but to the args in typeck. Greatly improves normalization error spans from a signature.
The SCCs of the region graph are not a reliable heuristic to use for blaming an interesting
constraint for diagnostics. For region errors, if the outlived region is `'static`, or the involved
types are invariant in their lifetiems, there will be cycles in the constraint graph containing both
the target region and the most interesting constraints to blame. To get better diagnostics in these
cases, this commit removes that heuristic.
Fix ICE when multiple supertrait substitutions need assoc but only one is provided
Dyn traits must have all of their associated types constrained either by:
1. writing them in the dyn trait itself as an associated type bound, like `dyn Iterator<Item = u32>`,
2. A supertrait bound, like `trait ConstrainedIterator: Iterator<Item = u32> {}`, then you may write `dyn ConstrainedIterator` which doesn't need to mention `Item`.
However, the object type lowering code did not consider the fact that there may be multiple supertraits with different substitutions, so it just used the associated type's *def id* as a key for keeping track of which associated types are missing:
1fc691e6dd/compiler/rustc_hir_analysis/src/hir_ty_lowering/dyn_compatibility.rs (L131)
This means that we can have missing associated types when there are mutliple supertraits with different substitutions and only one of them is constrained, like:
```rust
trait Sup<T> {
type Assoc: Default;
}
impl<T: Default> Sup<T> for () {
type Assoc = T;
}
impl<T: Default, U: Default> Dyn<T, U> for () {}
trait Dyn<A, B>: Sup<A, Assoc = A> + Sup<B> {}
```
The above example allows you to name `<dyn Dyn<i32, u32> as Sup<u32>>::Assoc` even though it is not possible to project since it's neither constrained by a manually written projection bound or a supertrait bound. This successfully type-checks, but leads to a codegen ICE since we are not able to project the associated type.
This PR fixes the validation for checking that a dyn trait mentions all of its associated type bounds. This is theoretically a breaking change, since you could technically use that `dyn Dyn<A, B>` type mentionedin the example above without actually *projecting* to the bad associated type, but I don't expect it to ever be relevant to a user since it's almost certainly a bug. This is corroborated with the crater results[^crater], which show no failures[^unknown].
Crater: https://github.com/rust-lang/rust/pull/133392#issuecomment-2508769703Fixes#133388
[^crater]: I cratered this originally with #133397, which is a PR that is stacked on top, then re-ran crater with just the failures from that PR.
[^unknown]: If you look at the crater results, it shows all of the passes as "unknown". I believe this is a crater bug, since looking at the results manually shows them as passes.
Consider comments and bare delimiters the same as an "empty line" for purposes of hiding rendered code output of long multispans. This results in more aggressive shortening of rendered output without losing too much context, specially in `*.stderr` tests that have "hidden" comments.
Remove the "which is required by `{root_obligation}`" post-script in
"the trait `X` is not implemented for `Y`" explanation in E0277. This
information is already conveyed in the notes explaining requirements,
making it redundant while making the text (particularly in labels)
harder to read.
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
vs the prior
```
error[E0277]: the trait bound `NotCopy: Copy` is not satisfied
--> $DIR/wf-static-type.rs:10:13
|
LL | static FOO: IsCopy<Option<NotCopy>> = IsCopy { t: None };
| ^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `NotCopy`, which is required by `Option<NotCopy>: Copy`
|
= note: required for `Option<NotCopy>` to implement `Copy`
note: required by a bound in `IsCopy`
--> $DIR/wf-static-type.rs:7:17
|
LL | struct IsCopy<T:Copy> { t: T }
| ^^^^ required by this bound in `IsCopy`
```
On implicit `Sized` bound on fn argument, point at type instead of pattern
Instead of
```
error[E0277]: the size for values of type `(dyn ThriftService<(), AssocType = _> + 'static)` cannot be known at compilation time
--> $DIR/issue-59324.rs:23:20
|
LL | fn with_factory<H>(factory: dyn ThriftService<()>) {}
| ^^^^^^^ doesn't have a size known at compile-time
```
output
```
error[E0277]: the size for values of type `(dyn ThriftService<(), AssocType = _> + 'static)` cannot be known at compilation time
--> $DIR/issue-59324.rs:23:29
|
LL | fn with_factory<H>(factory: dyn ThriftService<()>) {}
| ^^^^^^^^^^^^^^^^^^^^^ doesn't have a size known at compile-time
```
Instead of
```
error[E0277]: the size for values of type `(dyn ThriftService<(), AssocType = _> + 'static)` cannot be known at compilation time
--> $DIR/issue-59324.rs:23:20
|
LL | fn with_factory<H>(factory: dyn ThriftService<()>) {}
| ^^^^^^^ doesn't have a size known at compile-time
```
output
```
error[E0277]: the size for values of type `(dyn ThriftService<(), AssocType = _> + 'static)` cannot be known at compilation time
--> $DIR/issue-59324.rs:23:29
|
LL | fn with_factory<H>(factory: dyn ThriftService<()>) {}
| ^^^^^^^^^^^^^^^^^^^^^ doesn't have a size known at compile-time
```