Some tests expect to be compiled for a specific CPU or require certain
target features to be present (or absent). These tests work fine with
default CPUs but fail in downstream builds for RHEL and Fedora, where
we use non-default CPUs such as z13 on s390x, pwr9 on ppc64le, or
x86-64-v2/x86-64-v3 on x86_64.
rustc_target: Add target features for LoongArch v1.1
This patch adds new target features for LoongArch v1.1:
* div32
* lam-bh
* lamcas
* ld-seq-sa
* scq
compiler: add `ExternAbi::is_rustic_abi`
Various parts of the compiler were hand-rolling this extremely simple check that is nonetheless easy to get wrong as the compiler evolves over time. Discourage them from being so "original" again by replacing it with a single implementation on the type that represents these ABIs. This simplifies a surprising amount of code as a result.
Also fixes#132981, an ICE that emerged due to other checks being made stricter.
Tweak incorrect ABI suggestion and make suggestion verbose
Provide a better suggestion message, and make the suggestion verbose.
```
error[E0703]: invalid ABI: found `riscv-interrupt`
--> $DIR/riscv-discoverability-guidance.rs:17:8
|
LL | extern "riscv-interrupt" fn isr() {}
| ^^^^^^^^^^^^^^^^^ invalid ABI
|
= note: invoke `rustc --print=calling-conventions` for a full list of supported calling conventions
help: there's a similarly named valid ABI `riscv-interrupt-m`
|
LL | extern "riscv-interrupt-m" fn isr() {}
| ++
```
Provide a better suggestion message, and make the suggestion verbose.
```
error[E0703]: invalid ABI: found `riscv-interrupt`
--> $DIR/riscv-discoverability-guidance.rs:17:8
|
LL | extern "riscv-interrupt" fn isr() {}
| ^^^^^^^^^^^^^^^^^ invalid ABI
|
= note: invoke `rustc --print=calling-conventions` for a full list of supported calling conventions
help: there's a similarly named valid ABI `"riscv-interrupt-m"`
|
LL | extern "riscv-interrupt-m" fn isr() {}
| ++
```
vectorcall ABI: require SSE2
According to the official docs at https://learn.microsoft.com/en-us/cpp/cpp/vectorcall, SSE2 is required for this ABI. Add a check that enforces this.
I put this together with the other checks ensuring the target features required for a function are present... however, since the ABI is known pre-monomorphization, it would be possible to do this check earlier, which would have the advantage of checking even in `cargo check`. It would have the disadvantage of spreading this code in yet more places.
The first commit just does a little refactoring of the mono-time ABI check to make it easier to add the new check.
Cc `@workingjubilee`
try-job: dist-i586-gnu-i586-i686-musl
These are either residue of a long-term migration away from something,
or are simply trying too hard to be specifically useful:
nearest-match suggestions for ABI strings should handle this.
Enable more tests on Windows
As part of the discussion of https://github.com/rust-lang/compiler-team/issues/822 on Zulip, it was mentioned that problems with the i686-pc-windows-gnu target may have resulted in tests being disabled on Windows.
So in this PR, I've ripped out all our `//@ ignore-windows` directives, then re-added all the ones that are definitely required based on the outcome of try-builds, and in some cases I've improved the justification or tightened the directives to `//@ ignore-msvc` or ignoring specific targets.
Similar to how the alignment is already checked, this adds a check
for null pointer dereferences in debug mode. It is implemented similarly
to the alignment check as a MirPass.
This is related to a 2025H1 project goal for better UB checks in debug
mode: https://github.com/rust-lang/rust-project-goals/pull/177.
Fix tests on LLVM 20
For sparcv8plus.rs, duplicate the test for LLVM 19 and LLVM 20. LLVM 20 resolves one of the FIXME in the test.
For x86_64-bigint-add.rs split the check lines for LLVM 19 and LLVM 20. The difference in codegen here is due to a difference in unroll factor, which I believe is not what the test is interested in.
Fixes https://github.com/rust-lang/rust/issues/132957.
Fixes https://github.com/rust-lang/rust/issues/133754.
Add gpu-kernel calling convention
The amdgpu-kernel calling convention was reverted in commit f6b21e90d1 (#120495 and https://github.com/rust-lang/rust-analyzer/pull/16463) due to inactivity in the amdgpu target.
Introduce a `gpu-kernel` calling convention that translates to `ptx_kernel` or `amdgpu_kernel`, depending on the target that rust compiles for.
Tracking issue: #135467
amdgpu target tracking issue: #135024
The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Rename Receiver -> LegacyReceiver
As part of the "arbitrary self types v2" project, we are going to replace the current `Receiver` trait with a new mechanism based on a new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard. Options considered included:
* HardCodedReceiver (because it should only be used for things in the standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary. Assuming the new mechanism proceeds to stabilization as intended, the legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library, we suspect it may be in use elsehwere, so we're landing this change separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Check ABI target compatibility for function pointers
Tracking issue: https://github.com/rust-lang/rust/issues/130260
Related tracking issue: #87678
Compatibility of an ABI for a target was previously only performed on function definitions and `extern` blocks. This PR adds it also to function pointers to be consistent.
This might have broken some of the `tests/ui/` depending on the platform, so a try run seems like a good idea.
Also this might break existing code, because we now emit extra errors. Does this require a crater run?
# Example
```rust
// build with: --target=x86_64-unknown-linux-gnu
// These raise E0570
extern "thiscall" fn foo() {}
extern "thiscall" { fn bar() }
// This did not raise any error
fn baz(f: extern "thiscall" fn()) { f() }
```
# Open Questions
* [x] Should this report a future incompatibility warning like #87678 ?
* [ ] Is this the best place to perform the check?