Revert most of #133194 (except the test and the comment fixes). Then refix
not emitting locations at all when the correct location discriminator value
exceeds LLVM's capacity.
tests: Port `extern-fn-reachable` to rmake.rs
Part of #121876.
## Summary
This PR ports `tests/run-make/extern-fn-reachable` to use `rmake.rs`. Notable changes:
- We now use the `object` crate and look at the exported symbols specifically.
- This test's coverage regressed against windows-msvc back in [replace dynamic library module with libloading #90716](https://github.com/rust-lang/rust/pull/90716), but since we use `object` now, we're able to claw the test coverage back.
- The checks are now stricter:
1. It no longer looks for substring symbol matches in `nm` textual outputs, it inspects the symbol names precisely.
2. We now also explicitly check for the presence of leading underscore in exported symbol names on apple vs non-apple targets.
- Added another case of `#[no_mangle] fn fun6() {}` (note the lack of `pub`) to check that Rust nameres visibility is orthogonal to symbol visibility in dylib.
## History
- Test was initially introduced as a run-pass[^run-pass] test as part of [Don't mark reachable extern fns as internal #10539](https://github.com/rust-lang/rust/pull/10539).
- Test re-introduced as a run-make test in https://github.com/rust-lang/rust/pull/13741.
- Later, the test coverage regressed in https://github.com/rust-lang/rust/pull/90716.
[^run-pass]: no longer a thing nowadays
Supersedes #128314.
Co-authored with `@lolbinarycat.`
try-job: x86_64-msvc
try-job: i686-msvc
try-job: i686-mingw
try-job: x86_64-mingw-1
try-job: x86_64-apple-1
try-job: aarch64-apple
try-job: test-various
Some targets have many different CPUs and no generic CPU that can be
used as a default. For these targets, the user needs to explicitly
specify a CPU through `-C target-cpu=`.
Add an option for targets and an error message if no CPU is set.
This affects the proposed amdgpu and avr targets.
this also makes the rust.docs-minification option work
as advertised in config.toml
nothing fancy this time, this is intended to be perma-unstable.
it's only really here for the benefit of rustdoc devs.
mitegates https://github.com/rust-lang/rust/issues/135345
Add a notion of "some ABIs require certain target features"
I think I finally found the right shape for the data and checks that I recently added in https://github.com/rust-lang/rust/pull/133099, https://github.com/rust-lang/rust/pull/133417, https://github.com/rust-lang/rust/pull/134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features.
We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested.
For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;)
As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see https://github.com/rust-lang/rust/issues/133611, but no such change is happening in this PR.
r? `@workingjubilee`
Pass objcopy args for stripping on OSX
When `-Cstrip` was changed in #131405 to use the bundled rust-objcopy instead of /usr/bin/strip on OSX, strip-like arguments were preserved.
But strip and objcopy are, while being the same binary, different, they have different defaults depending on which binary they are. Notably, strip strips everything by default, and objcopy doesn't strip anything by default.
Additionally, `-S` actually means `--strip-all`, so debuginfo stripped everything and symbols didn't strip anything.
We now correctly pass `--strip-debug` and `--strip-all`.
fixes#135028
try-job: aarch64-apple
try-job: dist-aarch64-apple
When `-Cstrip` was changed to use the bundled rust-objcopy instead of
/usr/bin/strip on OSX, strip-like arguments were preserved.
But strip and objcopy are, while being the same binary, different, they
have different defaults depending on which binary they are.
Notably, strip strips everything by default, and objcopy doesn't strip
anything by default.
Additionally, `-S` actually means `--strip-all`, so debuginfo stripped
everything and symbols didn't strip anything.
We now correctly pass `--strip-debug` and `--strip-all`.
Migrate `libs-through-symlink` to rmake.rs
Part of https://github.com/rust-lang/rust/issues/121876.
This PR migrates `tests/run-make/libs-through-symlink/` to use rmake.rs.
- Regression test for #13890.
- Original fix PR is #13903.
- Document test intent, backlink to #13890 and fix PR #13903.
- Fix the test logic: the `Makefile` version seems to not actually be exercising the "library search traverses symlink" logic, because the actual symlinked-to-library is present under the `$(TMPDIR)` directory tree when `bar.rs` is compiled, because the `$(RUSTC)` invocation has an implicit `-L $(TMPDIR)`. The symlink itself was actually broken, i.e. it should've been `ln -nsf $(TMPDIR)/outdir/$(NAME) $(TMPDIR)` but it used `ln -nsf outdir/$(NAME) $(TMPDIR)`. The rmake.rs version now explicitly separates the two directory trees and sets the CWD of the `bar.rs` rustc invocation so that the actual library is *not* present under its CWD tree.
I.e. it is now
```
$test_output/ # rustc foo.rs -o actual_lib_dir/libfoo.rlib
actual_lib_dir/
libfoo.rlib
symlink_lib_dir/ # CWD set; rustc -L . bar.rs
libfoo.rlib --> $test_output/actual_lib_dir/libfoo.rlib
```
Partially supersedes #129011.
This PR is co-authored with `@Oneirical.`
r? compiler
- The Makefile version *never* ran because of Makefile syntax confusion.
- The test would've always failed because precompiled std is not built
with `-Z cf-protection=branch`, but linkers require all input object
files to indicate IBT support in order to enable IBT for the
executable, which is not the case for std.
- Thus, the test input file is instead changed to a `no_std` + `no_core`
program.
Co-authored-by: Jerry Wang <jerrylwang123@gmail.com>
Co-authored-by: Oneirical <manchot@videotron.ca>
- Document test intent, backlink to #13890 and fix PR #13903.
- Fix the test logic: the `Makefile` version seems to not actually be
exercising the "library search traverses symlink" logic, because the
actual symlinked-to-library is present under the directory tree when
`bar.rs` is compiled, because the `$(RUSTC)` invocation has an
implicit `-L $(TMPDIR)`. The symlink itself was actually broken, i.e.
it should've been `ln -nsf $(TMPDIR)/outdir/$(NAME) $(TMPDIR)` but it
used `ln -nsf outdir/$(NAME) $(TMPDIR)`.
Co-authored-by: Oneirical <manchot@videotron.ca>
Migrate `incr-add-rust-src-component` to rmake
This PR partially supersedes #128562, and ports the Makefile-based `tests/run-make/incr-add-rust-src-component` to use rmake.rs infra.
Part of #121876.
This run-make test is a regression test for https://github.com/rust-lang/rust/issues/70924. It (tries to) checks that if we add the `rust-src` component in between two incremental compiles, that the compiler doesn't ICE on the second invocation.
- Original issue:https://github.com/rust-lang/rust/issues/70924
- Fix PR: https://github.com/rust-lang/rust/pull/72767
- PR adding this regression test: https://github.com/rust-lang/rust/pull/72952
However, the Makefile version of this used `$SYSROOT/lib/rustlib/src/rust/src/libstd/lib.rs`, but that actually got moved around and reorganized over the years. As of Dec 2024, the `rust-src` component is more like (specific for our purposes):
```
$SYSROOT/lib/rustlib/src/rust/
library/std/src/lib.rs
src/
```
However, this run-make test is ancient and it exercises incr-comp system logic. I'm not sure if this test would actually catch the original regression.
This PR was co-authored with `@Oneirical.`
r? incremental
try-job: i686-msvc
try-job: x86_64-mingw-1
try-job: x86_64-msvc
try-job: aarch64-apple
The Makefile version seems to contain a bug. Over the years, the
directory structure of the `rust-src` component changed as the source
tree directory structure changed. `libstd` is no longer a thing directly
under `root/lib/rustlib/src/rust/src/`, it is moved to
`root/lib/rustlib/src/rust/library/std`.
Co-authored-by: Oneirical <manchot@videotron.ca>
Field init shorthand allows writing initializers like `tcx: tcx` as
`tcx`. The compiler already uses it extensively. Fix the last few places
where it isn't yet used.
don't show the full linker args unless `--verbose` is passed
the linker arguments can be *very* long, especially for crates with many dependencies. often they are not useful. omit them unless the user specifically requests them.
split out from https://github.com/rust-lang/rust/pull/119286. fixes https://github.com/rust-lang/rust/issues/109979.
r? `@bjorn3`
try-build: i686-mingw
the linker arguments can be *very* long, especially for crates with many dependencies. some parts of them are not very useful. unless specifically requested:
- omit object files specific to the current invocation
- fold rlib files into a single braced argument (in shell expansion format)
this shortens the output significantly without removing too much information.
Update linux_musl base to dynamically link the crt by default
However, don't change the behavior of any existing targets at this time. For targets that used the old default, explicitly set `crt_static_default = true`.
This makes it easier for new targets to use the correct defaults while leaving the changing of individual targets to future PRs.
Related to https://github.com/rust-lang/compiler-team/issues/422
[AIX] Remove option "-n" from AIX "ln" command
The option `-n` for the AIX `ln` command has a different purpose than it does on Linux. On Linux, the `-n` option is used to treat the destination path as normal file if it is a symbolic link to a directory, which is the default behavior of the AIX `ln` command.
Add more info on type/trait mismatches for different crate versions
When encountering a type or trait mismatch for two types coming from two different crates with the same name, detect if it is either mixing two types/traits from the same crate on different versions:
```
error[E0308]: mismatched types
--> replaced
|
LL | do_something_type(Type);
| ----------------- ^^^^ expected `dependency::Type`, found `dep_2_reexport::Type`
| |
| arguments to this function are incorrect
|
note: two different versions of crate `dependency` are being used; two types coming from two different versions of the same crate are different types even if they look the same
--> replaced
|
LL | pub struct Type(pub i32);
| ^^^^^^^^^^^^^^^ this is the expected type `dependency::Type`
|
::: replaced
|
LL | pub struct Type;
| ^^^^^^^^^^^^^^^ this is the found type `dep_2_reexport::Type`
|
::: replaced
|
LL | extern crate dep_2_reexport;
| ---------------------------- one version of crate `dependency` is used here, as a dependency of crate `foo`
LL | extern crate dependency;
| ------------------------ one version of crate `dependency` is used here, as a direct dependency of the current crate
= help: you can use `cargo tree` to explore your dependency tree
note: function defined here
--> replaced
|
LL | pub fn do_something_type(_: Type) {}
| ^^^^^^^^^^^^^^^^^
error[E0308]: mismatched types
--> replaced
|
LL | do_something_trait(Box::new(Type) as Box<dyn Trait2>);
| ------------------ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected trait `dependency::Trait2`, found trait `dep_2_reexport::Trait2`
| |
| arguments to this function are incorrect
|
note: two different versions of crate `dependency` are being used; two types coming from two different versions of the same crate are different types even if they look the same
--> replaced
|
LL | pub trait Trait2 {}
| ^^^^^^^^^^^^^^^^ this is the expected trait `dependency::Trait2`
|
::: replaced
|
LL | pub trait Trait2 {}
| ^^^^^^^^^^^^^^^^ this is the found trait `dep_2_reexport::Trait2`
|
::: replaced
|
LL | extern crate dep_2_reexport;
| ---------------------------- one version of crate `dependency` is used here, as a dependency of crate `foo`
LL | extern crate dependency;
| ------------------------ one version of crate `dependency` is used here, as a direct dependency of the current crate
= help: you can use `cargo tree` to explore your dependency tree
note: function defined here
--> replaced
|
LL | pub fn do_something_trait(_: Box<dyn Trait2>) {}
| ^^^^^^^^^^^^^^^^^^
```
or if it is different crates that were renamed to the same name:
```
error[E0308]: mismatched types
--> $DIR/type-mismatch-same-crate-name.rs:21:20
|
LL | a::try_foo(foo2);
| ---------- ^^^^ expected `main:🅰️:Foo`, found a different `main:🅰️:Foo`
| |
| arguments to this function are incorrect
|
note: two types coming from two different crates are different types even if they look the same
--> $DIR/auxiliary/crate_a2.rs:1:1
|
LL | pub struct Foo;
| ^^^^^^^^^^^^^^ this is the found type `crate_a2::Foo`
|
::: $DIR/auxiliary/crate_a1.rs:1:1
|
LL | pub struct Foo;
| ^^^^^^^^^^^^^^ this is the expected type `crate_a1::Foo`
|
::: $DIR/type-mismatch-same-crate-name.rs:13:17
|
LL | let foo2 = {extern crate crate_a2 as a; a::Foo};
| --------------------------- one type comes from crate `crate_a2` is used here, which is renamed locally to `a`
...
LL | extern crate crate_a1 as a;
| --------------------------- one type comes from crate `crate_a1` is used here, which is renamed locally to `a`
note: function defined here
--> $DIR/auxiliary/crate_a1.rs:10:8
|
LL | pub fn try_foo(x: Foo){}
| ^^^^^^^
error[E0308]: mismatched types
--> $DIR/type-mismatch-same-crate-name.rs:27:20
|
LL | a::try_bar(bar2);
| ---------- ^^^^ expected trait `main:🅰️:Bar`, found a different trait `main:🅰️:Bar`
| |
| arguments to this function are incorrect
|
note: two types coming from two different crates are different types even if they look the same
--> $DIR/auxiliary/crate_a2.rs:3:1
|
LL | pub trait Bar {}
| ^^^^^^^^^^^^^ this is the found trait `crate_a2::Bar`
|
::: $DIR/auxiliary/crate_a1.rs:3:1
|
LL | pub trait Bar {}
| ^^^^^^^^^^^^^ this is the expected trait `crate_a1::Bar`
|
::: $DIR/type-mismatch-same-crate-name.rs:13:17
|
LL | let foo2 = {extern crate crate_a2 as a; a::Foo};
| --------------------------- one trait comes from crate `crate_a2` is used here, which is renamed locally to `a`
...
LL | extern crate crate_a1 as a;
| --------------------------- one trait comes from crate `crate_a1` is used here, which is renamed locally to `a`
note: function defined here
--> $DIR/auxiliary/crate_a1.rs:11:8
|
LL | pub fn try_bar(x: Box<Bar>){}
| ^^^^^^^
```
This new output unifies the E0308 errors detail with the pre-existing E0277 errors, and better differentiates the "`extern crate` renamed" and "same crate, different versions" cases.
When encountering a type or trait mismatch for two types coming from two different crates with the same name, detect if it is either mixing two types/traits from the same crate on different versions:
```
error[E0308]: mismatched types
--> replaced
|
LL | do_something_type(Type);
| ----------------- ^^^^ expected `dependency::Type`, found `dep_2_reexport::Type`
| |
| arguments to this function are incorrect
|
note: two different versions of crate `dependency` are being used; two types coming from two different versions of the same crate are different types even if they look the same
--> replaced
|
LL | pub struct Type(pub i32);
| ^^^^^^^^^^^^^^^ this is the expected type `dependency::Type`
|
::: replaced
|
LL | pub struct Type;
| ^^^^^^^^^^^^^^^ this is the found type `dep_2_reexport::Type`
|
::: replaced
|
LL | extern crate dep_2_reexport;
| ---------------------------- one version of crate `dependency` is used here, as a dependency of crate `foo`
LL | extern crate dependency;
| ------------------------ one version of crate `dependency` is used here, as a direct dependency of the current crate
= help: you can use `cargo tree` to explore your dependency tree
note: function defined here
--> replaced
|
LL | pub fn do_something_type(_: Type) {}
| ^^^^^^^^^^^^^^^^^
error[E0308]: mismatched types
--> replaced
|
LL | do_something_trait(Box::new(Type) as Box<dyn Trait2>);
| ------------------ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected trait `dependency::Trait2`, found trait `dep_2_reexport::Trait2`
| |
| arguments to this function are incorrect
|
note: two different versions of crate `dependency` are being used; two types coming from two different versions of the same crate are different types even if they look the same
--> replaced
|
LL | pub trait Trait2 {}
| ^^^^^^^^^^^^^^^^ this is the expected trait `dependency::Trait2`
|
::: replaced
|
LL | pub trait Trait2 {}
| ^^^^^^^^^^^^^^^^ this is the found trait `dep_2_reexport::Trait2`
|
::: replaced
|
LL | extern crate dep_2_reexport;
| ---------------------------- one version of crate `dependency` is used here, as a dependency of crate `foo`
LL | extern crate dependency;
| ------------------------ one version of crate `dependency` is used here, as a direct dependency of the current crate
= help: you can use `cargo tree` to explore your dependency tree
note: function defined here
--> replaced
|
LL | pub fn do_something_trait(_: Box<dyn Trait2>) {}
| ^^^^^^^^^^^^^^^^^^
```
or if it is different crates that were renamed to the same name:
```
error[E0308]: mismatched types
--> $DIR/type-mismatch-same-crate-name.rs:21:20
|
LL | a::try_foo(foo2);
| ---------- ^^^^ expected `main:🅰️:Foo`, found a different `main:🅰️:Foo`
| |
| arguments to this function are incorrect
|
note: two types coming from two different crates are different types even if they look the same
--> $DIR/auxiliary/crate_a2.rs:1:1
|
LL | pub struct Foo;
| ^^^^^^^^^^^^^^ this is the found type `crate_a2::Foo`
|
::: $DIR/auxiliary/crate_a1.rs:1:1
|
LL | pub struct Foo;
| ^^^^^^^^^^^^^^ this is the expected type `crate_a1::Foo`
|
::: $DIR/type-mismatch-same-crate-name.rs:13:17
|
LL | let foo2 = {extern crate crate_a2 as a; a::Foo};
| --------------------------- one type comes from crate `crate_a2` is used here, which is renamed locally to `a`
...
LL | extern crate crate_a1 as a;
| --------------------------- one type comes from crate `crate_a1` is used here, which is renamed locally to `a`
note: function defined here
--> $DIR/auxiliary/crate_a1.rs:10:8
|
LL | pub fn try_foo(x: Foo){}
| ^^^^^^^
error[E0308]: mismatched types
--> $DIR/type-mismatch-same-crate-name.rs:27:20
|
LL | a::try_bar(bar2);
| ---------- ^^^^ expected trait `main:🅰️:Bar`, found a different trait `main:🅰️:Bar`
| |
| arguments to this function are incorrect
|
note: two types coming from two different crates are different types even if they look the same
--> $DIR/auxiliary/crate_a2.rs:3:1
|
LL | pub trait Bar {}
| ^^^^^^^^^^^^^ this is the found trait `crate_a2::Bar`
|
::: $DIR/auxiliary/crate_a1.rs:3:1
|
LL | pub trait Bar {}
| ^^^^^^^^^^^^^ this is the expected trait `crate_a1::Bar`
|
::: $DIR/type-mismatch-same-crate-name.rs:13:17
|
LL | let foo2 = {extern crate crate_a2 as a; a::Foo};
| --------------------------- one trait comes from crate `crate_a2` is used here, which is renamed locally to `a`
...
LL | extern crate crate_a1 as a;
| --------------------------- one trait comes from crate `crate_a1` is used here, which is renamed locally to `a`
note: function defined here
--> $DIR/auxiliary/crate_a1.rs:11:8
|
LL | pub fn try_bar(x: Box<Bar>){}
| ^^^^^^^
```
This new output unifies the E0308 errors detail with the pre-existing E0277 errors, and better differentiates the "`extern crate` renamed" and "same crate, different versions" cases.
Print name of env var in `--print=deployment-target`
The deployment target environment variable is OS-specific, and if you're in a place where you're asking `rustc` for the deployment target, you're likely to also wanna know the name of the environment variable. I myself wanted this for some code I'm working on in bootstrap, for example.
Behaviour before this PR:
```console
$ rustc --print=deployment-target --target=aarch64-apple-darwin
deployment_target=11.0
$ rustc --print=deployment-target --target=aarch64-apple-visionos
deployment_target=1.0
```
Behaviour after this PR:
```console
$ rustc --print=deployment-target --target=aarch64-apple-darwin
MACOSX_DEPLOYMENT_TARGET=11.0
$ rustc --print=deployment-target --target=aarch64-apple-visionos
XROS_DEPLOYMENT_TARGET=1.0
```
My _belief_ is that this option is extremely rarely used in general, and a GitHub search for "rustc print deployment-target" seems to confirm this, it revealed only the following actual pieces of code using this:
- b292ef6934/src/build_context.rs (L1199-L1220)
- daab9244b0/src/lib.rs (L3422-L3426)
`maturin` does `.split('=').last()`, so it will continue to work after this change, but `cc v1.0.84` did `.strip_prefix("deployment_target=")` since [this PR](https://github.com/rust-lang/cc-rs/pull/848), so it would break. That's _probably_ fine though, it was broken in a lot of scenarios anyway, and [got](https://github.com/rust-lang/cc-rs/pull/901) [reverted](https://github.com/rust-lang/cc-rs/pull/943) in `v1.0.85`.
So while this is _technically_ a breaking change, I really doubt that anyone is going to observe it, so it's probably fine.
``@BlackHoleFox`` wdyt?
``@rustbot`` label O-apple
r? compiler
Do not call `extern_crate` on current trait on crate mismatch errors
When we encounter an error caused by traits/types of different versions of the same crate, filter out the current crate when collecting spans to add to the context so we don't call `extern_crate` on the `DefId` of the current crate, which is meaningless and ICEs.
Produced output with this filter:
```
error[E0277]: the trait bound `foo::Struct: Trait` is not satisfied
--> y.rs:13:19
|
13 | check_trait::<foo::Struct>();
| ^^^^^^^^^^^ the trait `Trait` is not implemented for `foo::Struct`
|
note: there are multiple different versions of crate `foo` in the dependency graph
--> y.rs:7:1
|
4 | extern crate foo;
| ----------------- one version of crate `foo` is used here, as a direct dependency of the current crate
5 |
6 | pub struct Struct;
| ----------------- this type implements the required trait
7 | pub trait Trait {}
| ^^^^^^^^^^^^^^^ this is the required trait
|
::: x.rs:4:1
|
4 | pub struct Struct;
| ----------------- this type doesn't implement the required trait
5 | pub trait Trait {}
| --------------- this is the found trait
= note: two types coming from two different versions of the same crate are different types even if they look the same
= help: you can use `cargo tree` to explore your dependency tree
note: required by a bound in `check_trait`
--> y.rs:10:19
|
10 | fn check_trait<T: Trait>() {}
| ^^^^^ required by this bound in `check_trait`
```
Fix#133563.
This reduces code sizes and better respects programmer intent when
marking inline(never). Previously such a marking was essentially ignored
for generic functions, as we'd still inline them in remote crates.
When we encounter an error caused by traits/types of different versions of the same crate, filter out the current crate when collecting spans to add to the context so we don't call `extern_crate` on the `DefId` of the current crate, which is meaningless and ICEs.
Produced output with this filter:
```
error[E0277]: the trait bound `foo::Struct: Trait` is not satisfied
--> y.rs:13:19
|
13 | check_trait::<foo::Struct>();
| ^^^^^^^^^^^ the trait `Trait` is not implemented for `foo::Struct`
|
note: there are multiple different versions of crate `foo` in the dependency graph
--> y.rs:7:1
|
4 | extern crate foo;
| ----------------- one version of crate `foo` is used here, as a direct dependency of the current crate
5 |
6 | pub struct Struct;
| ----------------- this type implements the required trait
7 | pub trait Trait {}
| ^^^^^^^^^^^^^^^ this is the required trait
|
::: x.rs:4:1
|
4 | pub struct Struct;
| ----------------- this type doesn't implement the required trait
5 | pub trait Trait {}
| --------------- this is the found trait
= note: two types coming from two different versions of the same crate are different types even if they look the same
= help: you can use `cargo tree` to explore your dependency tree
note: required by a bound in `check_trait`
--> y.rs:10:19
|
10 | fn check_trait<T: Trait>() {}
| ^^^^^ required by this bound in `check_trait`
```
Fix#133563.
Revert diagnostics hack to fix ICE 132920
This reverts 8a568d9f15 from #128849 to fix the diagnostics ICE in #132920.
The hack mentioned in that commit was supposed to be tailored to E277, but that codepath is used actually shared with other errors, e.g. at least the E283 from the linked issue.
We may have to eat the slightly worse diagnostics until a non-hacky way to make this error less verbose is implemented (or I guess a different hack specializing even more to E277's structure).
Sorry ``@estebank`` 🙏. I can close this if you'd prefer to fix it in a different way.
Since it seems unexpected that #128849 would impact the repro, here's how the error used to look before that PR.
```console
warning: unused import: `minirapier::Ray`
--> src/main.rs:2:5
|
2 | use minirapier::Ray;
| ^^^^^^^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
error[E0283]: type annotations needed
--> src/main.rs:10:5
|
10 | insert_resource(Res.into());
| ^^^^^^^^^^^^^^^ ---------- type must be known at this point
| |
| cannot infer type of the type parameter `R` declared on the function `insert_resource`
|
= note: cannot satisfy `_: Resource`
= help: the trait `Resource` is implemented for `Res`
note: required by a bound in `insert_resource`
--> src/main.rs:4:23
|
4 | fn insert_resource<R: Resource>(_resource: R) {}
| ^^^^^^^^ required by this bound in `insert_resource`
help: consider specifying the generic argument
|
10 | insert_resource::<R>(Res.into());
| +++++
help: consider removing this method call, as the receiver has type `Res` and `Res: Resource` trivially holds
|
10 - insert_resource(Res.into());
10 + insert_resource(Res);
```
And how it looks now without the ICE.
```console
warning: unused import: `minirapier::Ray`
--> src/main.rs:2:5
|
2 | use minirapier::Ray;
| ^^^^^^^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
error[E0283]: type annotations needed
--> src/main.rs:10:5
|
10 | insert_resource(Res.into());
| ^^^^^^^^^^^^^^^ ---------- type must be known at this point
| |
| cannot infer type of the type parameter `R` declared on the function `insert_resource`
|
= note: cannot satisfy `_: Resource`
note: there are multiple different versions of crate `minibevy` in the dependency graph
--> /home/lqd/rust/tmp/minimization/issue-132920/rustc-ice-version-conflict/minibevy_b/src/lib.rs:1:1
|
1 | pub trait Resource {}
| ^^^^^^^^^^^^^^^^^^ this is the required trait
|
::: src/main.rs:1:5
|
1 | use minibevy::Resource;
| -------- one version of crate `minibevy` is used here, as a direct dependency of the current crate
2 | use minirapier::Ray;
| ---------- one version of crate `minibevy` is used here, as a dependency of crate `minirapier`
|
::: /home/lqd/rust/tmp/minimization/issue-132920/rustc-ice-version-conflict/minibevy_a/src/lib.rs:1:1
|
1 | pub trait Resource {}
| ------------------ this is the found trait
= help: you can use `cargo tree` to explore your dependency tree
note: required by a bound in `insert_resource`
--> src/main.rs:4:23
|
4 | fn insert_resource<R: Resource>(_resource: R) {}
| ^^^^^^^^ required by this bound in `insert_resource`
help: consider specifying the generic argument
|
10 | insert_resource::<R>(Res.into());
| +++++
help: consider removing this method call, as the receiver has type `Res` and `Res: Resource` trivially holds
|
10 - insert_resource(Res.into());
10 + insert_resource(Res);
|
```
The improvements from #128849 are still present and the note about the trait coming from the 2 versions of bevy is more explanatory/helpful than before, albeit a bit verbosely.
Fixes#132920.