Remove `generic_associated_types_extended` feature gate
This PR retires nightly support for the `generic_associated_types_extended` feature. This feature hasn't received much attention in the last two years or so, and I believe the feature still remains both unsound and ICEy to use. I think that if we were to redesign and reimplement it, we'd want to first figure out how to implement it soundly, but in the mean time I'd prefer to clean this up.
r? ``@lcnr`` cc ``@jackh726`` who added this feature gate I think
improve TagEncoding::Niche docs, sanity check, and UB checks
Turns out the `niche_variants` range can actually contain the `untagged_variant`. We should report this as UB in Miri, so this PR implements that.
Also rename `partially_check_layout` to `layout_sanity_check` for better consistency with how similar functions are called in other parts of the compiler.
Turns out my adjustments to the transmutation logic also fix https://github.com/rust-lang/rust/issues/126267.
Gate async fn trait bound modifier on `async_trait_bounds`
This PR moves `async Fn()` trait bounds into a new feature gate: `feature(async_trait_bounds)`. The general vibe is that we will most likely stabilize the `feature(async_closure)` *without* the `async Fn()` trait bound modifier, so we need to gate that separately.
We're trying to work on the general vision of `async` trait bound modifier general in: https://github.com/rust-lang/rfcs/pull/3710, however that RFC still needs more time for consensus to converge, and we've decided that the value that users get from calling the bound `async Fn()` is *not really* worth blocking landing async closures in general.
fix ICE when promoted has layout size overflow
Turns out there is no reason to distinguish `tainted_by_errors` and `can_be_spurious` here, we can just track whether we allow this even in "infallible" constants.
Fixes https://github.com/rust-lang/rust/issues/125476
These operations are much more about lowering the HIR than about
`Const`s themselves. They fit better in hir_ty_lowering with
`lower_const_arg` (formerly `Const::from_const_arg`) and the rest.
To accomplish this, `const_evaluatable_predicates_of` had to be changed
to not use `from_anon_const` anymore. Instead of visiting the HIR and
lowering anon consts on the fly, it now visits the `rustc_middle::ty`
data structures instead and directly looks for `UnevaluatedConst`s. This
approach was proposed in:
https://github.com/rust-lang/rust/pull/131081#discussion_r1821189257
Rollup of 8 pull requests
Successful merges:
- #128184 (std: refactor `pthread`-based synchronization)
- #132047 (Robustify and genericize return-type-notation resolution in `resolve_bound_vars`)
- #133515 (fix: hurd build, stat64.st_fsid was renamed to st_dev)
- #133602 (fix: fix codeblocks in `PathBuf` example)
- #133622 (update link to "C++ Exceptions under the hood" blog)
- #133660 (Do not create trait object type if missing associated types)
- #133686 (Add diagnostic item for `std::ops::ControlFlow`)
- #133689 (Fixed typos by changing `happend` to `happened`)
r? `@ghost`
`@rustbot` modify labels: rollup
Respect verify-llvm-ir option in the backend
We are currently unconditionally verifying the LLVM IR in the backend (twice), ignoring the value of the verify-llvm-ir option. This has substantial compile-time impact for debug builds.
Pass -Z verify-llvm-ir to tests that rely on it, to make sure they
pass regardless of the value of verify-llvm-ir in config.toml.
Also remove the 109681.rs test, because it is a duplicat of
common-linkage-non-zero-init.rs.
Delay a bug when encountering an impl with unconstrained generics in `codegen_select`
Despite its name, `codegen_select` is what powers `Instance::try_resolve`, which is used in pre-codegen contexts to try to resolve a method where possible. One place that it's used is in the "recursion MIR lint" that detects recursive MIR bodies.
If we encounter an impl in `codegen_select` that contains unconstrained generic parameters, we expect that impl to caused an error to be reported; however, there's no temporal guarantee that this error is reported *before* we call `codegen_select`. This is what a delayed bug is *for*, and this PR makes us use a delayed bug rather than asserting something about errors already having been emitted.
Fixes #126646
do not constrain infer vars in `find_best_leaf_obligation`
This ended up causing an ICE by making the following code path reachable by incorrectly constraining an inference variable while computing the best obligation for a preceding ambiguity. Closes#129444.
f2abf827c1/compiler/rustc_trait_selection/src/solve/fulfill.rs (L312-L314)
I have to be honest, I don't fully understand how that change removes all the additional diagnostics :3
r? `@compiler-errors`
Bail on more errors in dyn ty lowering
If we have more than one principal trait, or if we have a principal trait with errors in it, then bail with `TyKind::Error` rather than attempting lowering. Lowering a dyn trait with more than one principal just arbitrarily chooses the first one and drops the subsequent ones, and lowering a dyn trait path with errors in it is just kinda useless.
This suppresses unnecessary errors which I think is net-good, but also is important to make sure that we don't end up leaking `{type error}` in https://github.com/rust-lang/rust/issues/133388 error messaging :)
r? types
Stop being so bail-y in candidate assembly
A conceptual follow-up to #132084. We gotta stop bailing so much when there are errors; it's both unnecessary, leads to weird knock-on errors, and it's messing up the vibes lol
Rollup of 4 pull requests
Successful merges:
- #131081 (Use `ConstArgKind::Path` for all single-segment paths, not just params under `min_generic_const_args`)
- #132577 (Report the `unexpected_cfgs` lint in external macros)
- #133023 (Merge `-Zhir-stats` into `-Zinput-stats`)
- #133200 (ignore an occasionally-failing test in Miri)
r? `@ghost`
`@rustbot` modify labels: rollup
Deny capturing late-bound ty/const params in nested opaques
First, this reverts a7f609504c. I can't exactly remember why I approved this specific bit of https://github.com/rust-lang/rust/pull/132466; specifically, I don't know that the purpose of that commit is, and afaict we will never have an opaque that captures late-bound params through a const because opaques can't be used inside of anon consts. Am I missing something `@cjgillot?` Since I can't see a case where this matters, and no tests seem to fail.
The second commit adds a `deny_late_regions: bool` to distinguish `Scope::LateBoundary` which should deny *any* late-bound params or just ty/consts. Then, when resolving opaques we wrap ourselves in a `Scope::LateBoundary { deny_late_regions: false }` so that we deny late-bound ty/const, which fixes a bunch of ICEs that all vaguely look like `impl for<T> Trait<Assoc = impl OtherTrait<T>>`.
I guess this could be achieved other ways; for example, with a different scope kind, or maybe we could just reuse `Scope::Opaque`. But this seems a bit more verbose. I'm open to feedback anyways.
Fixes#131535Fixes#131637Fixes#132530
I opted to remove those crashes tests ^ without adding them as regular tests, since they're basically triggering uninteresting late-bound ICEs far off in the trait solver, and the reason that existing tests such as `tests/ui/type-alias-impl-trait/non-lifetime-binder-in-constraint.rs` don't ICE are kinda just coincidental (i.e. due to a missing impl block). I don't really feel motivated to add random permutations to tests just to exercise non-lifetime binders.
r? cjgillot
Don't use `maybe_unwrap_block` when checking for macro calls in a block expr
Fixes#131915
Using `maybe_unwrap_block` to determine if we are looking at a `{ mac_call!{} }` will fail sometimes as `mac_call!{}` could be a `StmtKind::MacCall` not a `StmtKind::Expr`. This caused the def collector to think that `{ mac_call!{} }` was a non-trivial const argument and create a definition for it even though it should not.
r? `@compiler-errors` cc `@camelid`
Emit warning when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.
Part of #116558
r? RalfJung
On some architectures, vector types may have a different ABI depending
on whether the relevant target features are enabled. (The ABI when the
feature is disabled is often not specified, but LLVM implements some
de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily
lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to
declare or call functions using those vector types in a context in which
the corresponding target features are disabled, if using an ABI for
which the difference is relevant. This ensures that these functions are
always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187)
for more discussion.
Part of #116558