tidy: Fix paths to `coretests` and `alloctests`
Following `#135937` and `#136642`, tests for core and alloc are in coretests and alloctests. Fix tidy to lint for the new paths. Also, update comments referring to the old locations.
Some context for changes which don't match that pattern:
- `library/std/src/thread/local/dynamic_tests.rs` and `library/std/src/sync/mpsc/sync_tests.rs` were moved under `library/std/tests/` in 332fb7e6f1 (Move std::thread_local unit tests to integration tests, 2025-01-17) and b8ae372e48 (Move std::sync unit tests to integration tests, 2025-01-17), respectively, so are no longer special cases.
- There never was a `library/core/tests/fmt.rs` file. That comment previously referred to `src/test/ui/ifmt.rs`, which was folded into `library/alloc/tests/fmt.rs` in 949c96660c (move format! interface tests, 2020-09-08).
Now, the only matches for `(alloc|core)/tests` are in `compiler/rustc_codegen_{cranelift,gcc}/patches`. I don't know why CI hasn't broken because those patches can't apply. Or maybe they somehow still can apply?
r? `@bjorn3`
Following `#135937` and `#136642`, tests for core and alloc are in
coretests and alloctests. Fix tidy to lint for the new paths. Also,
update comments referring to the old locations.
Some context for changes which don't match that pattern:
* library/std/src/thread/local/dynamic_tests.rs and
library/std/src/sync/mpsc/sync_tests.rs were moved under
library/std/tests/ in 332fb7e6f1 (Move std::thread_local unit tests
to integration tests, 2025-01-17) and b8ae372e48 (Move std::sync unit
tests to integration tests, 2025-01-17), respectively, so are no
longer special cases.
* There never was a library/core/tests/fmt.rs file. That comment
previously referred to src/test/ui/ifmt.rs, which was folded into
library/alloc/tests/fmt.rs in 949c96660c (move format! interface
tests, 2020-09-08).
Rename internal module from `statik` to `no_threads`
This module is named in reference to the keyword, but the term is somewhat overloaded. Rename it to more clearly describe it and avoid the misspelling.
Fix missing const for inherent pointer `replace` methods
`ptr::replace` (the free fn) is already const stable. However, there are inherent convenience methods on `*mut T` and `NonNull<T>`, allowing you to write eg. `unsafe { foo.replace(bar) }` where `foo` is `*mut T` or `NonNull<T>`.
It seems const was never added to the inherent method (likely oversight), so this PR adds it.
I don't believe this needs another[^1] FCP as the inherent methods are already stable and `ptr::replace` is already const stable, so this adds no new API.
Original tracking issue: #83164
`ptr::replace` constified in #83091
`ptr::replace` const stabilized in #130954
[^1]: `const_replace` FCP completed: https://github.com/rust-lang/rust/issues/83164#issuecomment-2385670050
Move `fd` into `std::sys`
Move platform definitions of `fd` into `std::sys`, as part of https://github.com/rust-lang/rust/issues/117276.
Unlike other modules directly under `std::sys`, this is only available on some platforms and I have not provided a fallback abstraction for unsupported platforms. That is similar to how `std::os::fd` is gated to only supported platforms.
Also, fix the `unsafe_op_in_unsafe_fn` lint, which was allowed for the Unix fd impl. Since macro expansions from `std::sys::pal::unix::weak` trigger this lint, fix it there too.
cc `@joboet,` `@ChrisDenton`
try-job: x86_64-gnu-aux
Implement `SliceIndex` for `ByteStr`
Implement `Index` and `IndexMut` for `ByteStr` in terms of `SliceIndex`. Implement it for the same types that `&[u8]` supports (a superset of those supported for `&str`, which does not have `usize` and `ops::IndexRange`).
At the same time, move compare and index traits to a separate file in the `bstr` module, to give it more space to grow as more functionality is added (e.g., iterators and string-like ops). Order the items in `bstr/traits.rs` similarly to `str/traits.rs`.
cc `@joshtriplett`
`ByteStr`/`ByteString` tracking issue: https://github.com/rust-lang/rust/issues/134915
This module is named in reference to the keyword, but the term is
somewhat overloaded. Rename it to more clearly describe it and avoid the
misspelling.
Add integer to string formatting tests
As discussed in https://github.com/rust-lang/rust/pull/136264, there doesn't seem to have tests to ensure that int to string conversion is performed correctly, only sporadic tests here and there. Now we have some basic tests. :)
r? `````@Mark-Simulacrum`````
Expose algebraic floating point intrinsics
# Problem
A stable Rust implementation of a simple dot product is 8x slower than C++ on modern x86-64 CPUs. The root cause is an inability to let the compiler reorder floating point operations for better vectorization.
See https://github.com/calder/dot-bench for benchmarks. Measurements below were performed on a i7-10875H.
### C++: 10us ✅
With Clang 18.1.3 and `-O2 -march=haswell`:
<table>
<tr>
<th>C++</th>
<th>Assembly</th>
</tr>
<tr>
<td>
<pre lang="cc">
float dot(float *a, float *b, size_t len) {
#pragma clang fp reassociate(on)
float sum = 0.0;
for (size_t i = 0; i < len; ++i) {
sum += a[i] * b[i];
}
return sum;
}
</pre>
</td>
<td>
<img src="https://github.com/user-attachments/assets/739573c0-380a-4d84-9fd9-141343ce7e68" />
</td>
</tr>
</table>
### Nightly Rust: 10us ✅
With rustc 1.86.0-nightly (8239a37f9) and `-C opt-level=3 -C target-feature=+avx2,+fma`:
<table>
<tr>
<th>Rust</th>
<th>Assembly</th>
</tr>
<tr>
<td>
<pre lang="rust">
fn dot(a: &[f32], b: &[f32]) -> f32 {
let mut sum = 0.0;
for i in 0..a.len() {
sum = fadd_algebraic(sum, fmul_algebraic(a[i], b[i]));
}
sum
}
</pre>
</td>
<td>
<img src="https://github.com/user-attachments/assets/9dcf953a-2cd7-42f3-bc34-7117de4c5fb9" />
</td>
</tr>
</table>
### Stable Rust: 84us ❌
With rustc 1.84.1 (e71f9a9a9) and `-C opt-level=3 -C target-feature=+avx2,+fma`:
<table>
<tr>
<th>Rust</th>
<th>Assembly</th>
</tr>
<tr>
<td>
<pre lang="rust">
fn dot(a: &[f32], b: &[f32]) -> f32 {
let mut sum = 0.0;
for i in 0..a.len() {
sum += a[i] * b[i];
}
sum
}
</pre>
</td>
<td>
<img src="https://github.com/user-attachments/assets/936a1f7e-33e4-4ff8-a732-c3cdfe068dca" />
</td>
</tr>
</table>
# Proposed Change
Add `core::intrinsics::f*_algebraic` wrappers to `f16`, `f32`, `f64`, and `f128` gated on a new `float_algebraic` feature.
# Alternatives Considered
https://github.com/rust-lang/rust/issues/21690 has a lot of good discussion of various options for supporting fast math in Rust, but is still open a decade later because any choice that opts in more than individual operations is ultimately contrary to Rust's design principles.
In the mean time, processors have evolved and we're leaving major performance on the table by not supporting vectorization. We shouldn't make users choose between an unstable compiler and an 8x performance hit.
# References
* https://github.com/rust-lang/rust/issues/21690
* https://github.com/rust-lang/libs-team/issues/532
* https://github.com/rust-lang/rust/issues/136469
* https://github.com/calder/dot-bench
* https://www.felixcloutier.com/x86/vfmadd132ps:vfmadd213ps:vfmadd231ps
try-job: x86_64-gnu-nopt
try-job: x86_64-gnu-aux
ToSocketAddrs: fix typo
It's "a function", never "an function".
I noticed the same typo somewhere in the compiler sources so figured I'd fix it there as well.
Remove creation of duplicate `AnonPipe`
The `File` is unwrapped to a `Handle` into an `AnonPipe`, and then that `AnonPipe` was unwrapped to a `Handle` into another `AnonPipe`. The second operation is entirely redundant.
io: Avoid marking some bytes as uninit
These bytes were marked as uninit, which would cause them to be initialized multiple times even though it was not necessary.
slice: Remove some uses of unsafe in first/last chunk methods
Remove unsafe `split_at_unchecked` and `split_at_mut_unchecked` in some slice `split_first_chunk`/`split_last_chunk` methods.
Replace those calls with the safe `split_at` and `split_at_checked` where applicable.
Add codegen tests to check for no panics when calculating the last chunk index using `checked_sub` and `split_at`.
Better viewed with whitespace disabled in diff view
---
The unchecked calls are mostly manual implementations of the safe methods, but with the safety condition negated from `mid <= len` to `len < mid`.
```rust
if self.len() < N {
None
} else {
// SAFETY: We manually verified the bounds of the split.
let (first, tail) = unsafe { self.split_at_unchecked(N) };
// Or for the last_chunk methods
let (init, last) = unsafe { self.split_at_unchecked(self.len() - N) };
```
Unsafe is still needed for the pointer array casts. Their safety comments are unmodified.
The File is unwrapped to a Handle into an AnonPipe, and then that AnonPipe was unwrapped to a Handle into another AnonPipe. The second operation is entirely redundant.
remove `feature(inline_const_pat)`
Summarizing https://rust-lang.zulipchat.com/#narrow/channel/144729-t-types/topic/remove.20feature.28inline_const_pat.29.20and.20shared.20borrowck.
With https://github.com/rust-lang/types-team/issues/129 we will start to borrowck items together with their typeck parent. This is necessary to correctly support opaque types, blocking the new solver and TAIT/ATPIT stabilization with the old one. This means that we cannot really support `inline_const_pat` as they are implemented right now:
- we want to typeck inline consts together with their parent body to allow inference to flow both ways and to allow the const to refer to local regions of its parent.This means we also need to borrowck the inline const together with its parent as that's necessary to properly support opaque types
- we want the inline const pattern to participate in exhaustiveness checking
- to participate in exhaustiveness checking we need to evaluate it, which requires borrowck, which now relies on borrowck of the typeck root, which ends up checking exhaustiveness again. **This is a query cycle**.
There are 4 possible ways to handle this:
- stop typechecking inline const patterns together with their parent
- causes inline const patterns to be different than inline const exprs
- prevents bidirectional inference, we need to either fail to compile `if let const { 1 } = 1u32` or `if let const { 1u32 } = 1`
- region inference for inline consts will be harder, it feels non-trivial to support inline consts referencing local regions from the parent fn
- inline consts no longer participate in exhaustiveness checking. Treat them like `pat if pat == const { .. }` instead. We then only evaluate them after borrowck
- difference between `const { 1 }` and `const FOO: usize = 1; match x { FOO => () }`. This is confusing
- do they carry their weight if they are now just equivalent to using an if-guard
- delay exhaustiveness checking until after borrowck
- should be possible in theory, but is a quite involved change and may have some unexpected challenges
- remove this feature for now
I believe we should either delay exhaustiveness checking or remove the feature entirely. As moving exhaustiveness checking to after borrow checking is quite complex I think the right course of action is to fully remove the feature for now and to add it again once/if we've got that implementation figured out.
`const { .. }`-expressions remain stable. These seem to have been the main motivation for https://github.com/rust-lang/rfcs/issues/2920.
r? types
cc `@rust-lang/types` `@rust-lang/lang` #76001
Remove mention of `exhaustive_patterns` from `never` docs
The example shows an exhaustive match:
```rust
#![feature(exhaustive_patterns)]
use std::str::FromStr;
let Ok(s) = String::from_str("hello");
```
But https://github.com/rust-lang/rust/issues/119612 moved this functionality to `#![feature(min_exhaustive_patterns)` and then stabilized it.
Switch some rustc_on_unimplemented uses to diagnostic::on_unimplemented
The use on the SliceIndex impl appears unreachable, there is no mention of "vector indices" in any test output and I could not get it to show up in error messages.
Simplify expansion for format_args!().
Instead of calling `Placeholder::new()`, we can just use a struct expression directly.
Before:
```rust
Placeholder::new(…, …, …, …)
```
After:
```rust
Placeholder {
position: …,
flags: …,
width: …,
precision: …,
}
```
(I originally avoided the struct expression, because `Placeholder` had a lot of fields. But now that https://github.com/rust-lang/rust/pull/136974 is merged, it only has four fields left.)
This will make the `fmt` argument to `fmt::Arguments::new_v1_formatted()` a candidate for const promotion, which is important if we ever hope to tackle https://github.com/rust-lang/rust/issues/92698 (It doesn't change anything yet though, because the `args` argument to `fmt::Arguments::new_v1_formatted()` is not const-promotable.)
Remove unsafe `split_at_unchecked` and `split_at_mut_unchecked`
in some slice `split_first_chunk`/`split_last_chunk` methods.
Replace those calls with the safe `split_at` and `split_at_checked` where
applicable.
Add codegen tests to check for no panics when calculating the last
chunk index using `checked_sub` and `split_at`
Instead of calling new(), we can just use a struct expression directly.
Before:
Placeholder::new(…, …, …, …)
After:
Placeholder {
position: …,
flags: …,
width: …,
precision: …,
}
std: deduplicate `errno` accesses
By marking `__errno_location` as `#[ffi_const]` and `std::sys::os::errno` as `#[inline]`, this PR allows merging multiple calls to `io::Error::last_os_error()` into one.
Start using `with_native_path` in `std::sys::fs`
Ideally, each platform should use their own native path type internally. This will, for example, allow passing a `CStr` directly to `std::fs::File::open` and therefore avoid the need for allocating a new null-terminated C string.
However, doing that for every function and platform all at once makes for a large PR that is way too prone to breaking. So this PR does some minimal refactoring which should help progress towards that goal. The changes are Unix-only and even then I avoided functions that require more changes so that this PR is just moving things around.
r? joboet