Always compute coroutine layout for eagerly emitting recursive layout errors
Detect recursive coroutine layouts even if we don't detect opaque type recursion in the new solver. This is for two reasons:
1. It helps us detect (bad) recursive async function calls in the new solver, which due to its approach to normalization causes us to not detect this via a recursive RPIT (since the opaques are more eagerly revealed in the opaque body).
* Fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/137.
2. It helps us detect (bad) recursive async functions behind AFITs. See the AFIT test that changed for the old solver too.
3. It also greatly simplifies the recursive impl trait check, since I can remove some jankness around how it handles coroutines.
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
tree-wide: parallel: Fully removed all `Lrc`, replaced with `Arc`
This is continuation of https://github.com/rust-lang/rust/pull/132282 .
I'm pretty sure I did everything right. In particular, I searched all occurrences of `Lrc` in submodules and made sure that they don't need replacement.
There are other possibilities, through.
We can define `enum Lrc<T> { Rc(Rc<T>), Arc(Arc<T>) }`. Or we can make `Lrc` a union and on every clone we can read from special thread-local variable. Or we can add a generic parameter to `Lrc` and, yes, this parameter will be everywhere across all codebase.
So, if you think we should take some alternative approach, then don't merge this PR. But if it is decided to stick with `Arc`, then, please, merge.
cc "Parallel Rustc Front-end" ( https://github.com/rust-lang/rust/issues/113349 )
r? SparrowLii
`@rustbot` label WG-compiler-parallel
General housekeeping:
- Use less reexports from its rustc_target era
- Unify some imports as a result
- Split the Reg(ister) types into their own files
Generally moving stuff around because it makes the crate more consistent.
rustc_target has had a lot of weird reexports for various reasons, but
now we're at a point where we can actually start reducing their number.
We remove weird shadowing-dependent behavior and import directly from
rustc_abi instead of doing weird renaming imports.
This is only incremental progress and does not entirely fix the crate.
cg_llvm: Remove the `mod llvm_` hack, which should no longer be necessary
This re-export was introduced in c76fc3d804, as a workaround for #53912.
In short, there was/is an assumption in some LLVM LTO code that symbol names would not contain `.llvm.`, but legacy symbol mangling would naturally produce that sequence for symbols in a module named `llvm`.
This was later “fixed” by adding a special case to the legacy symbol mangler in #61195, which detects the sequence `llvm` and emits the `m` in an escaped form. As a result, there should no longer be any need to avoid the module name `llvm` in the compiler itself.
(Symbol mangling v0 avoids this problem by not using `.` in the first place, outside of the “vendor-specific suffix”.)
Only highlight unmatchable parameters at the definition site
Followup to #136497
This generally results more focused messages in the same vein as #99635 (see `test/ui/argument-suggestions/complex.rs`). There are still some cases (e.g. `test/ui/argument-suggestions/permuted_arguments.rs`) where it might be worth highlighting the arguments. This is mitigated by the fact that a suggestion with a suggested rearrangement is given.
r? `@compiler-errors`
Document why some "type mismatches" exist
Just something I stumbled over and thought to save myself (and maybe others) the research time when encountering it again.
Pass spans around new solver
...so that when we instantiate canonical responses, we can actually have region obligations with the right span.
Within the solver itself, we still use dummy spans everywhere.
Avoid using make_direct_deprecated() in extern "ptx-kernel"
This method will be removed in the future as it produces a broken ABI that depends on cg_llvm implementation details. After this PR wasm32-unknown-unknown is the only remaining user of make_direct_deprecated().
Fixes https://github.com/rust-lang/rust/issues/117271
Blocks https://github.com/rust-lang/rust/issues/38788
We have four macros for generating trivial traversal (fold/visit) and
lift impls.
- `rustc_ir::TrivialTypeTraversalImpls`
- `rustc_middle::TrivialTypeTraversalImpls`
- `rustc_middle::TrivialLiftImpls`
- `rustc_middle::TrivialTypeTraversalAndLiftImpls`
The first two are very similar. The last one just combines the second
and third one.
The macros themselves are ok, but their use is a mess. This commit does
the following.
- Removes types that no longer need a lift and/or traversal impl from
the macro calls.
- Consolidates the macro calls into the smallest number of calls
possible, with each one mentioning as many types as possible.
- Orders the types within those macro calls alphabetically, and makes
the module qualification more consistent.
- Eliminates `rustc_middle::mir::type_foldable`, because the macro calls
were merged and the manual `TypeFoldable` impls are better placed in
`structural_impls.rs`, alongside all the other ones.
This makes the code more concise. Moving forward, it also makes it more
obvious where new types should be added.
Reject negative literals for unsigned or char types in pattern ranges and literals
It sucks a bit that we have to duplicate the work here (normal expressions just get this for free from the `ExprKind::UnOp(UnOp::Neg, ...)` typeck logic.
In https://github.com/rust-lang/rust/pull/134228 I caused
```rust
fn main() {
match 42_u8 {
-10..255 => {},
_ => {}
}
}
```
to just compile without even a lint.
I can't believe we didn't have tests for this
Amusingly https://github.com/rust-lang/rust/pull/136302 will also register a delayed bug in `lit_to_const` for this, so we'll have a redundancy if something like this fails again.