More ErrorKinds for common errnos
From the commit message of the main commit here (as revised):
```
There are a number of IO error situations which it would be very
useful for Rust code to be able to recognise without having to resort
to OS-specific code. Taking some Unix examples, `ENOTEMPTY` and
`EXDEV` have obvious recovery strategies. Recently I was surprised to
discover that `ENOSPC` came out as `ErrorKind::Other`.
Since I am familiar with Unix I reviwed the list of errno values in
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
Here, I add those that most clearly seem to be needed.
`@CraftSpider` provided information about Windows, and references, which
I have tried to take into account.
This has to be insta-stable because we can't sensibly have a different
set of ErrorKinds depending on a std feature flag.
I have *not* added these to the mapping tables for any operating
systems other than Unix and Windows. I hope that it is OK to add them
now for Unix and Windows now, and maybe add them to other OS's mapping
tables as and when someone on that OS is able to consider the
situation.
I adopted the general principle that it was usually a bad idea to map
two distinct error values to the same Rust error code. I notice that
this principle is already violated in the case of `EACCES` and
`EPERM`, which both map to `PermissionDenied`. I think this was
probably a mistake but it would be quite hard to change now, so I
don't propose to do anything about that.
However, for Windows, there are sometimes different error codes for
identical situations. Eg there are WSA* versions of some error
codes as well as ERROR_* ones. Also Windows seems to have a great
many more erorr codes. I don't know precisely what best practice
would be for Windows.
```
<strike>
```
Errno values I wasn't sure about so *haven't* included:
EMFILE ENFILE ENOBUFS ENOLCK:
These are all fairly Unix-specific resource exhaustion situations.
In practice it seemed not very likely to me that anyone would want
to handle these differently to `Other`.
ENOMEM ERANGE EDOM EOVERFLOW
Normally these don't get exposed to the Rust callers I hope. They
don't tend to come out of filesystem APIs.
EILSEQ
Hopefully Rust libraries open files in binary mode and do the
converstion in Rust. So Rust code ought not to be exposed to
EILSEQ.
EIO
The range of things that could cause this is troublesome. I found
it difficult to describe. I do think it would be useful to add this
at some point, because EIO on a filesystem operation is much more
serious than most other errors.
ENETDOWN
I wasn't sure if this was useful or, indeed, if any modern systems
use it.
ENOEXEC
It is not clear to me how a Rust program could respond to this. It
seems rather niche.
EPROTO ENETRESET ENODATA ENOMSG ENOPROTOOPT ENOSR ENOSTR ETIME
ENOTRECOVERABLE EOWNERDEAD EBADMSG EPROTONOSUPPORT EPROTOTYPE EIDRM
These are network or STREAMS related errors which I have never in
my own Unix programming found the need to do anything with. I think
someone who understands these better should be the one to try to
find good Rust names and descriptions for them.
ENOTTY ENXIO ENODEV EOPNOTSUPP ESRCH EALREADY ECANCELED ECHILD
EINPROGRESS
These are very hard to get unless you're already doing something
very Unix-specific, in which case the raw_os_error interface is
probably more suitable than relying on the Rust ErrorKind mapping.
EFAULT EBADF
These would seem to be the result of application UB.
```
</strike>
<i>(omitted errnos are discussed below, especially in https://github.com/rust-lang/rust/pull/79965#issuecomment-810468334)
Redefine `ErrorKind::Other` and stop using it in std.
This implements the idea I shared yesterday in the libs meeting when we were discussing how to handle adding new `ErrorKind`s to the standard library: This redefines `Other` to be for *user defined errors only*, and changes all uses of `Other` in the standard library to a `#[doc(hidden)]` and permanently `#[unstable]` `ErrorKind` that users can not match on. This ensures that adding `ErrorKind`s at a later point in time is not a breaking change, since the user couldn't match on these errors anyway. This way, we use the `#[non_exhaustive]` property of the enum in a more effective way.
Open questions:
- How do we check this change doesn't cause too much breakage? Will a crate run help and be enough?
- How do we ensure we don't accidentally start using `Other` again in the standard library? We don't have a `pub(not crate)` or `#[deprecated(in this crate only)]`.
cc https://github.com/rust-lang/rust/pull/79965
cc `@rust-lang/libs` `@ijackson`
r? `@dtolnay`
Multiple improvements to RwLocks
This PR replicates #77147, #77380 and #84650 on RWLocks :
- Split `sys_common::RWLock` in `StaticRWLock` and `MovableRWLock`
- Unbox rwlocks on some platforms (Windows, Wasm and unsupported)
- Simplify `RwLock::into_inner`
Notes to reviewers :
- For each target, I copied `MovableMutex` to guess if `MovableRWLock` should be boxed.
- ~A comment says that `StaticMutex` is not re-entrant, I don't understand why and I don't know whether it applies to `StaticRWLock`.~
r? `@m-ou-se`
Since android ndk version `r23-beta3`, `libgcc` has been replaced with
`libunwind`. This moves the linking of `libgcc`/`libunwind` into the
`unwind` crate where we check if the system compiler can find
`libunwind` and fall back to `libgcc` if needed.
- Split `sys_common::RWLock` between `StaticRWLock` and `MovableRWLock`
- Unbox `RwLock` on some platforms (Windows, Wasm and unsupported)
- Simplify `RwLock::into_inner`
Fix `vxworks`
Some PRs made the `vxworks` target not build anymore. This PR fixes that:
- #82973: copy `ExitStatusError` implementation from `unix`.
- #84716: no `libc::chroot` available on `vxworks`, so for now don't implement `os::unix::fs::chroot`.
Windows implementation of feature `path_try_exists`
Draft of a Windows implementation of `try_exists` (#83186).
The first commit reorganizes the code so I would be interested to get some feedback on if this is a good idea or not. It moves the `Path::try_exists` function to `fs::exists`. leaving the former as a wrapper for the latter. This makes it easier to provide platform specific implementations and matches the `fs::metadata` function.
The other commit implements a Windows specific variant of `exists`. I'm still figuring out my approach so this is very much a first draft. Eventually this will need some more eyes from knowledgable Windows people.
Move `std::memchr` to `sys_common`
`std::memchr` is a thin abstraction over the different `memchr` implementations in `sys`, along with documentation and tests. The module is only used internally by `std`, nothing is exported externally. Code like this is exactly what the `sys_common` module is for, so this PR moves it there.
Provide ExitStatusError
Closes#73125
In MR #81452 "Add #[must_use] to [...] process::ExitStatus" we concluded that the existing arrangements in are too awkward so adding that `#[must_use]` is blocked on improving the ergonomics.
I wrote a mini-RFC-style discusion of the approach in https://github.com/rust-lang/rust/issues/73125#issuecomment-771092741
Closes#73125
This is in pursuance of
Issue #73127 Consider adding #[must_use] to std::process::ExitStatus
In
MR #81452 Add #[must_use] to [...] process::ExitStatus
we concluded that the existing arrangements in are too awkward
so adding that #[must_use] is blocked on improving the ergonomics.
I wrote a mini-RFC-style discusion of the approach in
https://github.com/rust-lang/rust/issues/73125#issuecomment-771092741
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
fork fails there. The failure message is confusing: so c.status()
returns an Err, the closure panics, and the test thinks the panic was
propagated from inside the child.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Co-authored-by: Mara Bos <m-ou.se@m-ou.se>
This tests that we can indeed safely panic after fork, both
a raw libc::fork and in a Command pre_exec hook.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Co-authored-by: Mara Bos <m-ou.se@m-ou.se>
This is safe (does not involve heap allocation) but we don't yet have
a test to ensure that stays true. That will come in a moment.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Co-authored-by: Mara Bos <m-ou.se@m-ou.se>
Unwinding after fork() in the child is UB on some platforms, because
on those (including musl) malloc can be UB in the child of a
multithreaded program, and unwinding must box for the payload.
Even if it's safe, unwinding past fork() in the child causes whatever
traps the unwind to return twice. This is very strange and clearly
not desirable. With the default behaviour of the thread library, this
can even result in a panic in the child being transformed into zero
exit status (ie, success) as seen in the parent!
Fixes#79740.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Replace 'NULL' with 'null'
This replaces occurrences of "NULL" with "null" in docs, comments, and compiler error/lint messages. This is for the sake of consistency, as the lowercase "null" is already the dominant form in Rust. The all-caps NULL looks like the C macro (or SQL keyword), which seems out of place in a Rust context, given that NULL does not exist in the Rust language or standard library (instead having [`ptr::null()`](https://doc.rust-lang.org/stable/std/ptr/fn.null.html)).
Add std::os::unix::fs::chroot to change the root directory of the current process
This is a straightforward wrapper that uses the existing helpers for C
string handling and errno handling.
Having this available is convenient for UNIX utility programs written in
Rust, and avoids having to call the unsafe `libc::chroot` directly and
handle errors manually, in a program that may otherwise be entirely safe
code.
Reuse `sys::unix::cmath` on other platforms
Reuse `sys::unix::cmath` on all non-`windows` platforms.
`unix` is chosen as the canonical location instead of `unsupported` or `common` because `unsupported` doesn't make sense semantically and `common` is reserved for code that is supported on all platforms. Also `unix` is already the home of some non-`windows` code that is technically not exclusive to `unix` like `unix::path`.
This is a straightforward wrapper that uses the existing helpers for C
string handling and errno handling.
Having this available is convenient for UNIX utility programs written in
Rust, and avoids having to call the unsafe `libc::chroot` directly and
handle errors manually, in a program that may otherwise be entirely safe
code.
Inline most raw socket, fd and handle conversions
Now that file descriptor types on Unix have niches, it is advantageous for user libraries which provide file descriptor wrappers (e.g. `Socket` from socket2) to store a `File` internally instead of a `RawFd`, so that the niche can be taken advantage of. However, doing so will currently result in worse performance as `IntoRawFd`, `FromRawFd` and `AsRawFd` are not inlined. This change adds `#[inline]` to those methods on std types that wrap file descriptors, handles or sockets.
Rework `init` and `cleanup`
This PR reworks the code in `std` that runs before and after `main` and centralizes this code respectively in the functions `init` and `cleanup` in both `sys_common` and `sys`. This makes is easy to see what code is executed during initialization and cleanup on each platform just by looking at e.g. `sys::windows::init`.
Full list of changes:
- new module `rt` in `sys_common` to contain `init` and `cleanup` and the runtime macros.
- `at_exit` and the mechanism to register exit handlers has been completely removed. In practice this was only used for closing sockets on windows and flushing stdout, which have been moved to `cleanup`.
- <s>On windows `alloc` and `net` initialization is now done in `init`, this saves a runtime check in every allocation and network use.</s>
Remove `sys::args::Args::inner_debug` and use `Debug` instead
This removes the method `sys::args::Args::inner_debug` on all platforms and implements `Debug` for `Args` instead.
I believe this creates a more natural API for the different platforms under `sys`: export a type `Args: Debug + Iterator + ...` vs. `Args: Iterator + ...` and with a method `inner_debug`.
Move `sys_common::rwlock::StaticRWLock` etc. to `sys::unix::rwlock`
This moves `sys_common::rwlock::StaticRwLock`, `RWLockReadGuard` and `RWLockWriteGuard` to `sys::unix::rwlock`. They are already `#[cfg(unix)]` and don't need to be in `sys_common`.