change HIR typeck region uniquification handling approach
rust-lang/rust#144405 causes structural lookup of opaque types to not work during HIR typeck, so instead avoid uniquifying goals and instead only reprove them if MIR borrowck actually encounters an error.
This doesn't perfectly maintain the property that HIR typeck succeeding implies that MIR typeck succeeds, instead weakening this check to only guarantee that HIR typeck implies that MIR typeck succeeds modulo region uniquification. This means we still get the actually desirable ICEs if we MIR building is broken or we forget to check some property in HIR typeck, without having to deal with the fallout of uniquification in HIR typeck itself.
We report errors using the original obligation sources of HIR typeck so diagnostics aren't that negatively impacted either.
Here's the history of region uniquification while working on the new trait solver:
- rust-lang/rust#107981
- rust-lang/rust#110180
- rust-lang/rust#114117
- rust-lang/rust#130821
- rust-lang/rust#144405
- rust-lang/rust#145706 <- we're here 🎉
r? `@BoxyUwU`
When encountering an unmet trait bound, point at local type that doesn't implement the trait:
```
error[E0277]: the trait bound `Bar<T>: Foo` is not satisfied
--> $DIR/issue-64855.rs:9:19
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^^^ unsatisfied trait bound
|
help: the trait `Foo` is not implemented for `Bar<T>`
--> $DIR/issue-64855.rs:9:1
|
LL | pub struct Bar<T>(<Self as Foo>::Type) where Self: ;
| ^^^^^^^^^^^^^^^^^
```
add #![rustc_no_implicit_bounds]
Follow-up from rust-lang/rust#137944.
Adds a new `rustc_attrs` attribute that stops rustc from adding any default bounds. Useful for tests where default bounds just add noise and make debugging harder.
After reviewing all tests with `?Sized`, these tests seem like they could probably benefit from `#![rustc_no_implicit_bounds]`.
- Skipping most of `tests/ui/unsized` as these seem to want to test `?Sized`
- Skipping tests that used `Box<T>` because it's still bound by `T: MetaSized`
- Skipping parsing or other tests that cared about `?Sized` syntactically
- Skipping tests for `derive(CoercePointee)` because this appears to check that the pointee type is relaxed with `?Sized` explicitly
r? `@lcnr`
After reviewing all tests with `?Sized` and discussing with lcnr, these
tests seem like they could probably benefit from
`#![rustc_no_implicit_bounds]`.
These tests just need blessing, they don't have any interesting behaviour
changes.
Some of these tests have new errors because `LegacyReceiver` cannot be
proven to be implemented now that it is also testing for `MetaSized` -
but this is just a consequence of the other errors in the test.
incorrectly prefer builtin `dyn` impls :3
This makes #57893 slightly more exploitable with the new solver. It's still strictly better than the old solver and the underlying unsoundness persists in the new one even without this preference.
Properly fixing #57893 is something we've been looking at more deeply recently and discussed at the [Types Meetup during the All-Hands](https://hackmd.io/rz-4ghMzTb2wXOkdLKHaHw#Dyn-traits). Whatever approach we'll end up deciding on will likely require a fairly long transition period and some significant further design work. This should not block `-Znext-solver`.
fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/183
r? `@compiler-errors` cc `@rust-lang/types`
Fix replacing supertrait aliases in `ReplaceProjectionWith`
The new solver has a procedure called `predicates_for_object_candidate`, which elaborates the super-bounds and item-bounds that are required to hold for a dyn trait to implement something via a built-in object impl.
In that procedure, there is a folder called `ReplaceProjectionWith` which is responsible for replacing projections that reference `Self`, so that we don't encounter cycles when we then go on to normalize those projections in the process of proving these super-bounds.
That folder had a few problems: Firstly, it wasn't actually checking that this was a super bound originating from `Self`. Secondly, it only accounted for a *single* projection type def id, but trait objects can have multiple (i.e. `trait Foo<A, B>: Bar<A, Assoc = A> + Bar<B, Assoc = B>`).
To fix the first, it's simple enough to just add an equality check for the self ty. To fix the second, I implemented a matching step that's very similar to the `projection_may_match` check we have for upcasting, since on top of having multiple choices, we need to deal with both non-structural matches and ambiguity.
This probably lacks a bit of documentation, but I think it works pretty well.
Fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/171
r? lcnr
`hir::AssocItem` currently has a boolean `fn_has_self_parameter` field,
which is misplaced, because it's only relevant for associated fns, not
for associated consts or types. This commit moves it (and renames it) to
the `AssocKind::Fn` variant, where it belongs.
This requires introducing a new C-style enum, `AssocTag`, which is like
`AssocKind` but without the fields. This is because `AssocKind` values
are passed to various functions like `find_by_ident_and_kind` to
indicate what kind of associated item should be searched for, and having
to specify `has_self` isn't relevant there.
New methods:
- Predicates `AssocItem::is_fn` and `AssocItem::is_method`.
- `AssocItem::as_tag` which converts `AssocItem::kind` to `AssocTag`.
Removed `find_by_name_and_kinds`, which is unused.
`AssocItem::descr` can now distinguish between methods and associated
functions, which slightly improves some error messages.