kcfi: only reify trait methods when dyn-compatible
fixes https://github.com/rust-lang/rust/issues/146853
Only generate a `ReifyShim` for trait method calls if the trait is dyn-compatible.
Until now kcfi would generate a `ReifyShim` whenever a trait method was cast to a function pointer. But technically the shim is only needed for dyn-compatible traits (where the method might end up in a vtable).
Up to this point that was only slightly inefficient, but in combination with c-variadic trait methods it is wrong. For c-variadic trait methods the generated shim is incorrect, and that is why c-variadic methods make a trait no longer dyn-compatible: we should simply never generate a `ReifyShim` that is c-variadic.
With this change the documentation on `ReifyReason` is now actually correct:
> If KCFI is enabled, creating a function pointer from a method on a dyn-compatible trait. This includes the case of converting `::call`-like methods on closure-likes to function pointers.
cc ```@maurer``` ```@workingjubilee```
r? ```@rcvalle```
bless autodiff batching test
This pr blesses a broken test and unblocks running rust in the Enzyme CI: https://github.com/EnzymeAD/Enzyme/pull/2430
Enzyme is the plugin used by our std::autodiff and (future) std::batching modules, both of which are not build by default.
In the near future we also hope to enable std::autodiff in the Rust CI.
This test is the only one to combine two features, automatic differentiation and batching/vectorization. This combination is even more experimental than either feature on its own. I have a wip branch in which I enable more vectorization/batching and as part of that I'll think more about how to write those tests in a robust way (and likely change the interface). Until that lands, I don't care too much about what specific IR we generate here; it's just nice to track changes.
r? compiler
If the `LocalRef` is `LocalRef::Place`, we can refer to it directly,
because the local of place is an indirect pointer.
Such a statement is `_1 = &(_2.1)`.
If the `LocalRef` is `LocalRef::Operand`,
the `OperandRef` should provide the pointer of the reference.
Such a statement is `_1 = &((*_2).1)`.
But there is a special case that hasn't been handled, scalar pairs like `(&[i32; 16], i32)`.
Fix autodiff empty ret regression
closes https://github.com/rust-lang/rust/issues/147144
The two gsoc summer projects caused a bit of churn, which was to be expected, especially since we don't run autodiff in CI yet.
This adds a void return testcase that we should have had anyway, and fixes the regression.
r? `@Zalathar` (Just guessing since I've seen you in a few LLVM PRs and Oli is probably still busy. Feel free to reroll!)
Skip cleanups on unsupported targets
This commit is an update to the `AbortUnwindingCalls` MIR pass in the compiler. Specifically a new boolean is added for "can this target possibly unwind" and if that's `false` then terminators are all adjusted to be unreachable/not present. The end result is that this fixesrust-lang/rust#140293 for wasm targets.
The motivation for this PR is that currently on WebAssembly targets the usage of the `C-unwind` ABI can lead LLVM to either (a) emit exception-handling instructions or (b) hit a LLVM-ICE-style codegen error. WebAssembly as a base instruction set does not support unwinding at all, and a later proposal to WebAssembly, the exception-handling proposal, was what enabled this. This means that the current intent of WebAssembly targets is that they maintain the baseline of "don't emit exception-handling instructions unless enabled". The commit here is intended to restore this behavior by skipping these instructions even when `C-unwind` is present.
Exception-handling is a relatively tricky and also murky topic in WebAssembly, however. There are two sets of instructions LLVM can emit for WebAssembly exceptions, Rust's Emscripten target supports exceptions, WASI targets do not, the LLVM flags to enable this are not always obvious, and additionally this all touches on "changing exception-handling behavior should be a target-level concern, not a feature". Effectively WebAssembly's exception-handling integration into Rust is not finalized at this time. The best idea at this time is that a parallel set of targets will eventually be added which support exceptions, but it's not clear if/when to do this. In the meantime the goal is to keep existing targets working while still enabling experimentation with exception-handling with `-Zbuild-std` and various permutations of LLVM flags.
To that extent this commit does not blanket disable these landing pads and cleanup routines for WebAssembly but instead checks to see if panic=unwind is enabled or if `+exception-handling` is enabled. Tests are updated here as well to account for this where, by default, using a `C-unwind` ABI won't affect Rust codegen at all. If `+exception-handling` is enabled, however, then Rust codegen will look like native platforms where exceptions are caught and the program aborts. More-or-less I've done my best to keep exceptions working on wasm where it's possible to have them work, but turned them off where they're not supposed to be emitted.
Closesrust-lang/rust#140293
tests: relax expectations after llvm change 902ddda120a5
LLVM 22 is able to drop assumes that seem to not help further optimizations, which actually seems to dramatically _help_ further optimizations in some of our small test cases.
I'm a little unclear how to fix the last failure, in `tests/codegen-llvm/issues/issue-122600-ptr-discriminant-update.rs`:
```
-; Function Attrs: mustprogress nofree norecurse nosync nounwind willreturn memory(argmem: readwrite, inaccessiblemem: write) uwtable
+; Function Attrs: mustprogress nofree norecurse nosync nounwind nonlazybind willreturn memory(argmem: readwrite, inaccessiblemem: write) uwtable
define void ``@update(ptr`` noundef captures(none) %s) unnamed_addr #0 {
start:
- %_3.sroa.0.0.copyload = load i8, ptr %s, align 1
- %0 = trunc nuw i8 %_3.sroa.0.0.copyload to i1
- %1 = xor i1 %0, true
- tail call void ``@llvm.assume(i1`` %1)
store i8 1, ptr %s, align 1
ret void
}
```
I'm just not conversant enough in LLVM IR to follow the changes here.
``@rustbot`` label llvm-main
r? nikic
Add attributes for #[global_allocator] functions
Emit `#[rustc_allocator]` etc. attributes on the functions generated by the `#[global_allocator]` macro, which will emit LLVM attributes like `"alloc-family"`. If the module with the global allocator participates in LTO, this ensures that the attributes typically emitted on the allocator declarations are not lost if the definition is imported.
There is a similar issue when the allocator shim is used, but I've opted not to fix that case in this PR, because doing that cleanly is somewhat gnarly.
Related to https://github.com/rust-lang/rust/issues/145995.
Emit `#[rustc_allocator]` etc. attributes on the functions generated
by the `#[global_allocator]` macro, which will emit LLVM attributes
like `"alloc-family"`. If the module with the global allocator
participates in LTO, this ensures that the attributes typically
emitted on the allocator declarations are not lost if the
definition is imported.
Mark float intrinsics with no preconditions as safe
Note: for ease of reviewing, the list of safe intrinsics is sorted in the first commit, and then safe intrinsics are added in the second commit.
All *recently added* float intrinsics have been correctly marked as safe to call due to the fact that they have no preconditions. This adds the remaining float intrinsics which are safe to call to the safe intrinsic list, and removes the unsafe blocks around their calls.
---
Side note: this may want a try run before being added to the queue, since I'm not sure if there's any tier-2 code that uses these intrinsics that might not be tested on the usual PR flow. We've already uncovered a few places in subtrees that do this, and it's worth double-checking before clogging up the queue.
emit attribute for readonly non-pure inline assembly
fixes https://github.com/rust-lang/rust/issues/146761
Provide a better `MemoryEffects` to LLVM when an inline assembly block specifies `readonly` but not `pure`. That means that the assembly block may not perform any writes, but that there still may be side effects from its instructions.
I haven't been able to find a case yet where this actually matters, though. So the test checks that the right attribute is applied, but the generated assembly is equivalent to not specifying `readonly` at all.
r? ````@nikic````
cc ````@Amanieu````
LLVM 22 is able to drop assumes that seem to not help further
optimizations, which actually seems to dramatically _help_ further
optimizations in some of our small test cases.
Prevent ABI changes affect EnzymeAD
This PR handles ABI changes for autodiff input arguments to improve Enzyme compatibility. Fundamentally this adjusts activities when a function argument is lowered as an `ScalarPair`, so there's no mismatch between diff activities and args. Also removes activities corresponding to ZSTs.
fixes: https://github.com/rust-lang/rust/issues/144025
r? `@ZuseZ4`
initial implementation of the darwin_objc unstable feature
Tracking issue: https://github.com/rust-lang/rust/issues/145496
This feature makes it possible to reference Objective-C classes and selectors using the same ABI used by native Objective-C on Apple/Darwin platforms. Without it, Rust code interacting with Objective-C must resort to loading classes and selectors using costly string-based lookups at runtime. With it, these references can be loaded efficiently at dynamic load time.
r? ```@tmandry```
try-job: `*apple*`
try-job: `x86_64-gnu-nopt`
rustc_codegen_llvm: Adjust RISC-V inline assembly's clobber list
Despite that the `fflags` register (representing floating point exception flags) is stated as a flag register [in the reference](https://doc.rust-lang.org/reference/inline-assembly.html#r-asm.rules.preserved-registers), it's not
in the default clobber list of the RISC-V inline assembly and it would be better to fix it.
tests/codegen-llvm: Make rust-abi-arch-specific-adjustment portable
This test currently only runs on RISC-V and loongarch hosts, but assumes that the host target is the -gnu target. By using minicore, we can run this test on all host targets, regardless of architecture, as long as the LLVM components are built.
This also fixes this test on musl hosts of these architectures (though I've only tested on loongarch64-unknown-linux-musl).
Despite that the `fflags` register (representing floating point
exception flags) is stated as a flag register in the reference, it's not
in the default clobber list of the RISC-V inline assembly and it would
be better to fix it.
document `core::ffi::VaArgSafe`
tracking issue: https://github.com/rust-lang/rust/issues/44930
A modification of https://github.com/rust-lang/rust/pull/146454, keeping just the documentation changes, but not unsealing the trait.
Although conceptually we'd want to unseal the trait, there are many edge cases to supporting arbitrary types. We'd need to exhaustively test that all targets/calling conventions support all types that rust might generate (or generate proper error messages for unsupported cases). At present, many of the `va_arg` implementations assume that the argument is a scalar, and has an alignment of at most 8. That is totally sufficient for an MVP (accepting all of the "standard" C types), but clearly does not cover all rust types.
This PR also adds some various other tests for edge cases of c-variadic:
- the `#[inline]` attribute in its various forms. At present, LLVM is unable to inline c-variadic functions, but the attribute should still be accepted. `#[rustc_force_inline]` already rejects c-variadic functions.
- naked functions should accept and work with a C variable argument list. In the future we'd like to allow more ABIs with naked functions (basically, any ABI for which we accept defining foreign c-variadic functions), but for now only `"C"` and `"C-unwind` are supported
- guaranteed tail calls: c-variadic functions cannot be tail-called. That was already rejected, but there was not test for it.
r? `@workingjubilee`
match clang's `va_arg` assembly on arm targets
tracking issue: https://github.com/rust-lang/rust/issues/44930
For this example
```rust
#![feature(c_variadic)]
#[unsafe(no_mangle)]
unsafe extern "C" fn variadic(a: f64, mut args: ...) -> f64 {
let b = args.arg::<f64>();
let c = args.arg::<f64>();
a + b + c
}
```
We currently generate (via llvm):
```asm
variadic:
sub sp, sp, #12
stmib sp, {r2, r3}
vmov d0, r0, r1
add r0, sp, #4
vldr d1, [sp, #4]
add r0, r0, #15
bic r0, r0, #7
vadd.f64 d0, d0, d1
add r1, r0, #8
str r1, [sp]
vldr d1, [r0]
vadd.f64 d0, d0, d1
vmov r0, r1, d0
add sp, sp, #12
bx lr
```
LLVM is not doing a good job. In fact, it's well-known that LLVM's implementation of `va_arg` is kind of bad, and we implement it ourselves (based on clang) for many targets already. For arm, our own `emit_ptr_va_arg` saves 3 instructions.
Next, it turns out it's important for LLVM to explicitly start and end the lifetime of the `va_list`. In https://github.com/rust-lang/rust/pull/146059 I already end the lifetime, but when looking at this again, I noticed that it is important to also start it, see https://godbolt.org/z/EGqvKTTsK: failing to explicitly start the lifetime uses an extra register.
So, the combination of `emit_ptr_va_arg` with starting/ending the lifetime makes rustc emit exactly the instructions that clang generates::
```asm
variadic:
sub sp, sp, #12
stmib sp, {r2, r3}
vmov d16, r0, r1
vldr d17, [sp, #4]
vadd.f64 d16, d16, d17
vldr d17, [sp, #12]
vadd.f64 d16, d16, d17
vmov r0, r1, d16
add sp, sp, #12
bx lr
```
The arguments to `emit_ptr_va_arg` are based on [the clang implementation](03dc2a41f3/clang/lib/CodeGen/Targets/ARM.cpp (L798-L844)).
r? ``@workingjubilee`` (I can re-roll if your queue is too full, but you do seem like the right person here)
try-job: armhf-gnu
This commit is an update to the `AbortUnwindingCalls` MIR pass in the
compiler. Specifically a new boolean is added for "can this target
possibly unwind" and if that's `false` then terminators are all adjusted
to be unreachable/not present. The end result is that this fixes 140293
for wasm targets.
The motivation for this PR is that currently on WebAssembly targets the
usage of the `C-unwind` ABI can lead LLVM to either (a) emit
exception-handling instructions or (b) hit a LLVM-ICE-style codegen
error. WebAssembly as a base instruction set does not support unwinding
at all, and a later proposal to WebAssembly, the exception-handling
proposal, was what enabled this. This means that the current intent of
WebAssembly targets is that they maintain the baseline of "don't emit
exception-handling instructions unless enabled". The commit here is
intended to restore this behavior by skipping these instructions even
when `C-unwind` is present.
Exception-handling is a relatively tricky and also murky topic in
WebAssembly, however. There are two sets of instructions LLVM can emit
for WebAssembly exceptions, Rust's Emscripten target supports
exceptions, WASI targets do not, the LLVM flags to enable this are not
always obvious, and additionally this all touches on "changing
exception-handling behavior should be a target-level concern, not a
feature". Effectively WebAssembly's exception-handling integration into
Rust is not finalized at this time. The best idea at this time is that a
parallel set of targets will eventually be added which support
exceptions, but it's not clear if/when to do this. In the meantime the
goal is to keep existing targets working while still enabling
experimentation with exception-handling with `-Zbuild-std` and various
permutations of LLVM flags.
To that extent this commit does not blanket disable these landing pads
and cleanup routines for WebAssembly but instead checks to see if
panic=unwind is enabled or if `+exception-handling` is enabled. Tests
are updated here as well to account for this where, by default, using a
`C-unwind` ABI won't affect Rust codegen at all. If
`+exception-handling` is enabled, however, then Rust codegen will look
like native platforms where exceptions are caught and the program aborts.
More-or-less I've done my best to keep exceptions working on wasm where
it's possible to have them work, but turned them off where they're not
supposed to be emitted.
Implement `#[rustc_align_static(N)]` on `static`s
Tracking issue: https://github.com/rust-lang/rust/issues/146177
```rust
#![feature(static_align)]
#[rustc_align_static(64)]
static SO_ALIGNED: u64 = 0;
```
We need a different attribute than `rustc_align` because unstable attributes are tied to their feature (we can't have two unstable features use the same unstable attribute). Otherwise this uses all of the same infrastructure as `#[rustc_align]`.
r? `@traviscross`
We need a different attribute than `rustc_align` because unstable attributes are
tied to their feature (we can't have two unstable features use the same
unstable attribute). Otherwise this uses all of the same infrastructure
as `#[rustc_align]`.
This test currently only runs on RISC-V and loongarch hosts, but assumes
that the host target is the -gnu target. By using minicore, we can
run this test on all host targets, regardless of architecture, as long
as the LLVM components are built.
This also fixes this test on musl hosts of these architectures.
Signed-off-by: Jens Reidel <adrian@travitia.xyz>