Rewrite on_unimplemented format string parser.
This PR rewrites the format string parser for `rustc_on_unimplemented` and `diagnostic::on_unimplemented`. I plan on moving this code (and more) into the new attribute parsing system soon and wanted to PR it separately.
This PR introduces some minor differences though:
- `rustc_on_unimplemented` on trait *implementations* is no longer checked/used - this is actually never used (outside of some tests) so I plan on removing it in the future.
- for `rustc_on_unimplemented`, it introduces the `{This}` argument in favor of `{ThisTraitname}` (to be removed later). It'll be easier to parse.
- for `rustc_on_unimplemented`, `Self` can now consistently be used as a filter, rather than just `_Self`. It used to not match correctly on for example `Self = "[{integer}]"`
- Some error messages now have better spans.
Fixes https://github.com/rust-lang/rust/issues/130627
```
error[E0610]: `{integer}` is a primitive type and therefore doesn't have fields
--> $DIR/attempted-access-non-fatal.rs:7:15
|
LL | let _ = 2.l;
| ^
|
help: if intended to be a floating point literal, consider adding a `0` after the period and a `f64` suffix
|
LL - let _ = 2.l;
LL + let _ = 2.0f64;
|
```
This commit seeks to stabilize the `#[diagnostic::do_not_recommend]`
attribute.
This attribute was first proposed as `#[do_not_recommend`] attribute in
RFC 2397 (https://github.com/rust-lang/rfcs/pull/2397). It gives the
crate authors the ability to not suggest to the compiler to not show
certain traits in it's error messages. With the presence of the
`#[diagnostic]` tool attribute namespace it was decided to move the
attribute there, as that lowers the amount of guarantees the compiler
needs to give about the exact way this influences error messages. It
turns the attribute into a hint which can be ignored. In addition to the
original proposed functionality this attribute now also hides the marked
trait in help messages ("This trait is implemented by: ").
The attribute does not accept any argument and can only be placed on
trait implementations. If it is placed somewhere else a lint warning is
emitted and the attribute is otherwise ignored. If an argument is
detected a lint warning is emitted and the argument is ignored. This
follows the rules outlined by the diagnostic namespace.
This attribute allows crates like diesel to improve their error messages
drastically. The most common example here is the following error
message:
```
error[E0277]: the trait bound `&str: Expression` is not satisfied
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:53:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `Expression` is not implemented for `&str`, which is required by `&str: AsExpression<Integer>`
|
= help: the following other types implement trait `Expression`:
Bound<T>
SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:26:13
|
LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^
LL | where
LL | T: Expression<SqlType = ST>,
| ------------------------ unsatisfied trait bound introduced here
```
By applying the new attribute to the wild card trait implementation of
`AsExpression` for `T: Expression` the error message becomes:
```
error[E0277]: the trait bound `&str: AsExpression<Integer>` is not satisfied
--> $DIR/as_expression.rs:55:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `AsExpression<Integer>` is not implemented for `&str`
|
= help: the trait `AsExpression<Text>` is implemented for `&str`
= help: for that trait implementation, expected `Text`, found `Integer`
```
which makes it much easier for users to understand that they are facing
a type mismatch.
Other explored example usages included
* This standard library error message: https://github.com/rust-lang/rust/pull/128008
* That bevy derived example:
e1f3068995/tests/ui/diagnostic_namespace/do_not_recommend/supress_suggestions_in_help.rs (No
more tuple pyramids)
Fixes#51992
This PR aims to improve the testing coverage for
`#[diagnostic::do_not_recommend]`. It ensures that all tests are run for
the old and new solver to verify that the behaviour is the same for both
variants. It also adds two new tests:
* A test with 4 traits having wild card impl for each other, with
alternating `#[diagnostic::do_not_recommend]` attributse
* A test with a lifetime dependend wild card impl, which is something
that's not supported yet
Suggest creating unary tuples when types don't match a trait
When you want to have a variadic function, a common workaround to implement this is to create a trait and then implement that trait for various tuples. For example in `pyo3` there exists
```rust
/// Calls the object with only positional arguments.
pub fn call1(&self, args: impl IntoPy<Py<PyTuple>>) -> PyResult<&PyAny> {
...
}
```
with various impls like
```rust
impl<A: IntoPy<PyObject> IntoPy<Py<PyAny>> for (A,)
impl<A: IntoPy<PyObject, B: IntoPy<PyObject> IntoPy<Py<PyAny>> for (A, B)
... etc
```
This means that if you want to call the method with a single item you have to create a unary tuple, like `(x,)`, rather than just `x`.
This PR implements a suggestion to do that, if applicable.
When a trait is not implemented for a type, but there *is* an `impl`
for another type or different trait params, we format the output to
use highlighting in the same way that E0308 does for types.
The logic accounts for 3 cases:
- When both the type and trait in the expected predicate and the candidate are different
- When only the types are different
- When only the trait generic params are different
For each case, we use slightly different formatting and wording.
This commit changes the error reporting mechanism for not implemented
traits to skip impl marked as `#[diagnostic::do_not_recommend]` in the
help part of the error message ("the following other types implement
trait `Foo`:"). The main use case here is to allow crate authors to skip
non-meaningful confusing suggestions. A common example for this are
fully generic impls on tuples.
This commit refactors the `#[do_not_recommend]` support in the old
parser to also apply to projection errors and not only to selection
errors. This allows the attribute to be used more widely.
This change tweaks the error message generation to actually use the
`#[do_not_recommend]` attribute if present by just skipping the marked
trait impl in favour of the parent impl. It also adds a compile test for
this behaviour. Without this change the test would output the following
error:
```
error[E0277]: the trait bound `&str: Expression` is not satisfied
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:53:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `Expression` is not implemented for `&str`, which is required by `&str: AsExpression<Integer>`
|
= help: the following other types implement trait `Expression`:
Bound<T>
SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:26:13
|
LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^
LL | where
LL | T: Expression<SqlType = ST>,
| ------------------------ unsatisfied trait bound introduced here
```
Note how that mentions `&str: Expression` before and now mentions `&str:
AsExpression<Integer>` instead which is much more helpful for users.
Open points for further changes before stabilization:
* We likely want to move the attribute to the `#[diagnostic]` namespace
to relax the guarantees given?
* How does it interact with the new trait solver?
Make `#[diagnostic::on_unimplemented]` format string parsing more robust
This commit fixes several issues with the format string parsing of the `#[diagnostic::on_unimplemented]` attribute that were pointed out by `@ehuss.`
In detail it fixes:
* Appearing format specifiers (display, etc). For these we generate a warning that the specifier is unsupported. Otherwise we ignore them
* Positional arguments. For these we generate a warning that positional arguments are unsupported in that location and replace them with the format string equivalent (so `{}` or `{n}` where n is the index of the positional argument)
* Broken format strings with enclosed }. For these we generate a warning about the broken format string and set the emitted message literally to the provided unformatted string
* Unknown format specifiers. For these we generate an additional warning about the unknown specifier. Otherwise we emit the literal string as message.
This essentially makes those strings behave like `format!` with the minor difference that we do not generate hard errors but only warnings. After that we continue trying to do something unsuprising (mostly either ignoring the broken parts or falling back to just giving back the literal string as provided).
Fix#122391
r? `@compiler-errors`
This commit fixes several issues with the format string parsing of the
`#[diagnostic::on_unimplemented]` attribute that were pointed out by
@ehuss.
In detail it fixes:
* Appearing format specifiers (display, etc). For these we generate a
warning that the specifier is unsupported. Otherwise we ignore them
* Positional arguments. For these we generate a warning that positional
arguments are unsupported in that location and replace them with the
format string equivalent (so `{}` or `{n}` where n is the index of the
positional argument)
* Broken format strings with enclosed }. For these we generate a warning
about the broken format string and set the emitted message literally to
the provided unformatted string
* Unknown format specifiers. For these we generate an additional warning
about the unknown specifier. Otherwise we emit the literal string as
message.
This essentially makes those strings behave like `format!` with the
minor difference that we do not generate hard errors but only warnings.
After that we continue trying to do something unsuprising (mostly either
ignoring the broken parts or falling back to just giving back the
literal string as provided).
Fix#122391
This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal
option of the `#[diagnostic::on_unimplemented]` attribute.
The `#[diagnostic]` attribute namespace is meant to provide a home for
attributes that allow users to influence error messages emitted by the
compiler. The compiler is not guaranteed to use any of this hints,
however it should accept any (non-)existing attribute in this namespace
and potentially emit lint-warnings for unused attributes and options.
This is meant to allow discarding certain attributes/options in the
future to allow fundamental changes to the compiler without the need to
keep then non-meaningful options working.
The `#[diagnostic::on_unimplemented]` attribute is allowed to appear
on a trait definition. This allows crate authors to hint the compiler
to emit a specific error message if a certain trait is not implemented.
For the `#[diagnostic::on_unimplemented]` attribute the following
options are implemented:
* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the
broken code in the error message
* `note` which provides additional notes.
The `note` option can appear several times, which results in several
note messages being emitted. If any of the other options appears several
times the first occurrence of the relevant option specifies the actually
used value. Any other occurrence generates an lint warning. For any
other non-existing option a lint-warning is generated.
All three options accept a text as argument. This text is allowed to
contain format parameters referring to generic argument or `Self` by
name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any
non-existing argument a lint warning is generated.
Tracking issue: #111996