Ever since we added a Cargo-based build system for the compiler the
standard library has always been a little special, it's never been able
to depend on crates.io crates for runtime dependencies. This has been a
result of various limitations, namely that Cargo doesn't understand that
crates from crates.io depend on libcore, so Cargo tries to build crates
before libcore is finished.
I had an idea this afternoon, however, which lifts the strategy
from #52919 to directly depend on crates.io crates from the standard
library. After all is said and done this removes a whopping three
submodules that we need to manage!
The basic idea here is that for any crate `std` depends on it adds an
*optional* dependency on an empty crate on crates.io, in this case named
`rustc-std-workspace-core`. This crate is overridden via `[patch]` in
this repository to point to a local crate we write, and *that* has a
`path` dependency on libcore.
Note that all `no_std` crates also depend on `compiler_builtins`, but if
we're not using submodules we can publish `compiler_builtins` to
crates.io and all crates can depend on it anyway! The basic strategy
then looks like:
* The standard library (or some transitive dep) decides to depend on a
crate `foo`.
* The standard library adds
```toml
[dependencies]
foo = { version = "0.1", features = ['rustc-dep-of-std'] }
```
* The crate `foo` has an optional dependency on `rustc-std-workspace-core`
* The crate `foo` has an optional dependency on `compiler_builtins`
* The crate `foo` has a feature `rustc-dep-of-std` which activates these
crates and any other necessary infrastructure in the crate.
A sample commit for `dlmalloc` [turns out to be quite simple][commit].
After that all `no_std` crates should largely build "as is" and still be
publishable on crates.io! Notably they should be able to continue to use
stable Rust if necessary, since the `rename-dependency` feature of Cargo
is soon stabilizing.
As a proof of concept, this commit removes the `dlmalloc`,
`libcompiler_builtins`, and `libc` submodules from this repository. Long
thorns in our side these are now gone for good and we can directly
depend on crates.io! It's hoped that in the long term we can bring in
other crates as necessary, but for now this is largely intended to
simply make it easier to manage these crates and remove submodules.
This should be a transparent non-breaking change for all users, but one
possible stickler is that this almost for sure breaks out-of-tree
`std`-building tools like `xargo` and `cargo-xbuild`. I think it should
be relatively easy to get them working, however, as all that's needed is
an entry in the `[patch]` section used to build the standard library.
Hopefully we can work with these tools to solve this problem!
[commit]: 28ee12db81
We've seen sporadic QE failures in the timeout tests on this assertion:
assert!(kind == ErrorKind::WouldBlock || kind == ErrorKind::TimedOut);
So there's an error, but not either of the expected kinds. Adding a
format to show the kind revealed `ErrorKind::Interrupted` (`EINTR`).
For the cases that were using `read`, we can just use `read_exact` to
keep trying after interruption. For those using `recv_from`, we have to
manually loop until we get a non-interrupted result.
Make std::os::unix/linux::fs::MetadataExt::a/m/ctime* documentation clearer
I was confused by this API so I clarified what they are doing.
I was wondering if I should try to unify more documentation and examples between `unix` and `linux` (e.g. “of the file” is used in `unix` to refer to the file these metadata is for, “of this file” in `linux`, “of the underlying file” in `std::fs::File`).
Implement checked_add_duration for SystemTime
[Original discussion on the rust user forum](https://users.rust-lang.org/t/std-systemtime-misses-a-checked-add-function/21785)
Since `SystemTime` is opaque there is no way to check if the result of an addition will be in bounds. That makes the `Add<Duration>` trait completely unusable with untrusted data. This is a big problem because adding a `Duration` to `UNIX_EPOCH` is the standard way of constructing a `SystemTime` from a unix timestamp.
This PR implements `checked_add_duration(&self, &Duration) -> Option<SystemTime>` for `std::time::SystemTime` and as a prerequisite also for all platform specific time structs. This also led to the refactoring of many `add_duration(&self, &Duration) -> SystemTime` functions to avoid redundancy (they now unwrap the result of `checked_add_duration`).
Some basic unit tests for the newly introduced function were added too.
I wasn't sure which stabilization attribute to add to the newly introduced function, so I just chose `#[stable(feature = "time_checked_add", since = "1.32.0")]` for now to make it compile. Please let me know how I should change it or if I violated any other conventions.
P.S.: I could only test on Linux so far, so I don't necessarily expect it to compile for all platforms.
Since SystemTime is opaque there is no way to check if the result
of an addition will be in bounds. That makes the Add<Duration>
trait completely unusable with untrusted data. This is a big problem
because adding a Duration to UNIX_EPOCH is the standard way of
constructing a SystemTime from a unix timestamp.
This commit implements checked_add_duration(&self, &Duration) -> Option<SystemTime>
for std::time::SystemTime and as a prerequisite also for all platform
specific time structs. This also led to the refactoring of many
add_duration(&self, &Duration) -> SystemTime functions to avoid
redundancy (they now unwrap the result of checked_add_duration).
Some basic unit tests for the newly introduced function were added
too.
This commit, after reverting #55359, applies a different fix for #46775
while also fixing #55775. The basic idea was to go back to pre-#55359
libstd, and then fix#46775 in a way that doesn't expose #55775.
The issue described in #46775 boils down to two problems:
* First, the global environment is reset during `exec` but, but if the
`exec` call fails then the global environment was a dangling pointer
into free'd memory as the block of memory was deallocated when
`Command` is dropped. This is fixed in this commit by installing a
`Drop` stack object which ensures that the `environ` pointer is
preserved on a failing `exec`.
* Second, the global environment was accessed in an unsynchronized
fashion during `exec`. This was fixed by ensuring that the
Rust-specific environment lock is acquired for these system-level
operations.
Thanks to Alex Gaynor for pioneering the solution here!
Closes#55775
Co-authored-by: Alex Gaynor <alex.gaynor@gmail.com>
This commit deletes the `alloc_system` crate from the standard
distribution. This unstable crate is no longer needed in the modern
stable global allocator world, but rather its functionality is folded
directly into the standard library. The standard library was already the
only stable location to access this crate, and as a result this should
not affect any stable code.
Instead, pass the environment to execvpe, so the kernel can apply it directly to the new process. This avoids a use-after-free in the case where exec'ing the new process fails for any reason, as well as a race condition if there are other threads alive during the exec.
Reduce number of syscalls in `rand`
This skips the initial zero-length `getrandom` call and
directly hands the user buffer to the operating system, saving one
`getrandom` syscall.
set cfg(rustdoc) when rustdoc is running on a crate
When using `#[doc(cfg)]` to document platform-specific items, it's a little cumbersome to get all the platforms' items to appear all at once. For example, the standard library adds `--cfg dox` to rustdoc's command line whenever it builds docs, and the documentation for `#![feature(doc_cfg)]` suggests using a Cargo feature to approximate the same thing. This is a little awkward, because you always need to remember to set `--features dox` whenever you build documentation.
This PR proposes making rustdoc set `#[cfg(rustdoc)]` whenever it runs on a crate, to provide an officially-sanctioned version of this that is set automatically. This way, there's a standardized way to declare that a certain version of an item is specifically when building docs.
To try to prevent the spread of this feature from happening too quickly, this PR also restricts the use of this flag to whenever `#![feature(doc_cfg)]` is active. I'm sure there are other uses for this, but right now i'm tying it to this feature. (If it makes more sense to give this its own feature, i can easily do that.)
In case that it is statically known that the OS doesn't support
`getrandom` (non-Linux) or becomes clear at runtime that `getrandom`
isn't available (`ENOSYS`), the opened fd ("/dev/urandom") isn't closed
after the function, so that future calls can reuse it. This saves
repeated `open`/`close` system calls at the cost of one permanently open
fd.
Additionally, this skips the initial zero-length `getrandom` call and
directly hands the user buffer to the operating system, saving one
`getrandom` syscall.
clarify partially initialized Mutex issues
Using a `sys_common::mutex::Mutex` without calling `init` is dangerous, and yet there are some places that do this. I tried to find all of them and add an appropriate comment about reentrancy.
I found two places where (I think) reentrancy can actually occur, and was not able to come up with an argument for why this is okay. Someone who knows `io::lazy` and/or `sys_common::at_exit_imp` should have a careful look at this.