Remove some usages of `guess_head_span`
No need to pass things through `guess_head_span` if they already point to the head span.
Only major change is that we point to the head span of `enum`s on some errors now, which I prefer.
r? `@cjgillot`
interpret: get rid of MemPlaceMeta::Poison
This is achieved by refactoring the projection code (`{mplace,place,operand}_{downcast,field,index,...}`) so that we no longer need to call `assert_mem_place` in the operand handling.
Move abstract const to middle
Moves AbstractConst (and all associated methods) to rustc middle for use in `rustc_infer`.
This allows for const resolution in infer to use abstract consts to walk consts and check if
they are resolvable.
This attempts to resolve the issue where `Foo<{ concrete const }, generic T>` is incorrectly marked as conflicting, and is independent from the other issue where nested abstract consts must be resolved.
r? `@lcnr`
`ty::Const` doesn't have precomputed type flags, so
computing `has_vars_bound_at_or_above` for constants
requires us to visit the const and its contained types
and constants. A noop fold should be pretty much equally as
fast so removing it prevents us from walking the constant twice
in case it contains bound vars.
Implement `for<>` lifetime binder for closures
This PR implements RFC 3216 ([TI](https://github.com/rust-lang/rust/issues/97362)) and allows code like the following:
```rust
let _f = for<'a, 'b> |a: &'a A, b: &'b B| -> &'b C { b.c(a) };
// ^^^^^^^^^^^--- new!
```
cc ``@Aaron1011`` ``@cjgillot``
Pull Derefer before ElaborateDrops
_Follow up work to #97025#96549#96116#95887 #95649_
This moves `Derefer` before `ElaborateDrops` and creates a new `Rvalue` called `VirtualRef` that allows us to bypass many constraints for `DerefTemp`.
r? `@oli-obk`
Lower let-else in MIR
This MR will switch to lower let-else statements in MIR building instead.
To lower let-else in MIR, we build a mini-switch two branches. One branch leads to the matching case, and the other leads to the `else` block. This arrangement will allow temporary lifetime analysis running as-is so that the temporaries are properly extended according to the same rule applied to regular `let` statements.
cc https://github.com/rust-lang/rust/issues/87335Fix#98672
don't allow ZST in ScalarInt
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So I propose we stop using ScalarInt to represent ZST (which are clearly not integers). Instead, we can add new ZST variants to those types that did not have other variants which could be used for this purpose.
Based on https://github.com/rust-lang/rust/pull/98831. Only the commits starting from "don't allow ZST in ScalarInt" are new.
r? `@oli-obk`
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Clarify MIR semantics of storage statements
Seems worthwhile to start closing out some of the less controversial open questions about MIR semantics. Hopefully this is fairly non-controversial - it's what we implement already, and I see no reason to do anything more restrictive. cc ``@tmiasko`` who commented on this when it was discussed in the original PR that added these docs.
Miscellaneous inlining improvements
Add `#[inline]` to a few trivial non-generic methods from a perf report
that otherwise wouldn't be candidates for inlining.