Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
Issue Details:
In some cases it is necessary to generate an "allocator shim" to forward various Rust allocation functions (e.g., `__rust_alloc`) to an underlying function (e.g., `malloc`). However, since this allocator shim is a manually created LLVM module it is not processed via the normal module processing code and so no debug info is generated for it (if debugging info is enabled).
Fix Details:
* Modify the `debuginfo` code to allow creating debug info for a module without a `CodegenCx` (since it is difficult, and expensive, to create one just to emit some debug info).
* After creating the allocator shim add in basic debug info.
Rather than relying on `getPointerElementType()` from LLVM function
pointers, we now pass the function type explicitly when building `call`
or `invoke` instructions.
Add support for leaf function frame pointer elimination
This PR adds ability for the target specifications to specify frame
pointer emission type that's not just “always” or “whatever cg decides”.
In particular there's a new mode that allows omission of the frame
pointer for leaf functions (those that don't call any other functions).
We then set this new mode for Aarch64-based Apple targets.
Fixes#86196
This PR adds ability for the target specifications to specify frame
pointer emission type that's not just “always” or “whatever cg decides”.
In particular there's a new mode that allows omission of the frame
pointer for leaf functions (those that don't call any other functions).
We then set this new mode for Aarch64-based Apple targets.
Fixes#86196
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
For better throughput during parallel processing by LLVM, we used to sort
CGUs largest to smallest. This would lead to better thread utilization
by, for example, preventing a large CGU from being processed last and
having only one LLVM thread working while the rest remained idle.
However, this strategy would lead to high memory usage, as it meant the
LLVM-IR for all of the largest CGUs would be resident in memory at once.
Instead, we can compromise by ordering CGUs such that the largest and
smallest are first, second largest and smallest are next, etc. If there
are large size variations, this can reduce memory usage significantly.
Indicate both start and end of pass RSS in time-passes output
Previously, only the end of pass RSS was indicated. This could easily
lead one to believe that the change in RSS from one pass to the next was
attributable to the second pass, when in fact it occurred between the
end of the first pass and the start of the second.
Also, improve alignment of columns.
Sample of output:
```
time: 0.739; rss: 607MB -> 637MB item_types_checking
time: 8.429; rss: 637MB -> 775MB item_bodies_checking
time: 11.063; rss: 470MB -> 775MB type_check_crate
time: 0.232; rss: 775MB -> 777MB match_checking
time: 0.139; rss: 777MB -> 779MB liveness_and_intrinsic_checking
time: 0.372; rss: 775MB -> 779MB misc_checking_2
time: 8.188; rss: 779MB -> 1019MB MIR_borrow_checking
time: 0.062; rss: 1019MB -> 1021MB MIR_effect_checking
```
codegen: assume constants cannot fail to evaluate
https://github.com/rust-lang/rust/pull/80579 landed, so we can finally remove this old hack from codegen and instead assume that consts never fail to evaluate. :)
r? `@oli-obk`
Previously, only the end of pass RSS was indicated. This could easily
lead one to believe that the change in RSS from one pass to the next was
attributable to the second pass, when in fact it occurred between the
end of the first pass and the start of the second.
Also, improve alignment of columns.
rustc_codegen_ssa: use wall time for codegen_to_LLVM_IR time-passes entry
Use elapsed wall time spent on codegen_to_LLVM_IR for all CGUs as a
whole, rather than the sum for each CGU (the distinction matters for
parallel builds, where some CGUs are processed in parallel).
Use elapsed wall time spent on codegen_to_LLVM_IR for all CGUs as a
whole, rather than the sum for each CGU (the distinction matters for
parallel builds, where some CGUs are processed in parallel).
Update and improve `rustc_codegen_{llvm,ssa}` docs
Fixes#75342.
These docs were very out of date and misleading. They even said that
they codegen'd the *AST*!
For some reason, the `rustc_codegen_ssa::base` docs were exactly
identical to the `rustc_codegen_llvm::base` docs. They didn't really
make sense, because they had LLVM-specific information even though
`rustc_codegen_ssa` is supposed to be somewhat generic. So I removed
them as they were misleading.
r? ``@pnkfelix`` maybe?
These docs were very out of date and misleading. They even said that
they codegen'd the *AST*!
For some reason, the `rustc_codegen_ssa::base` docs were exactly
identical to the `rustc_codegen_llvm::base` docs. They didn't really
make sense, because they had LLVM-specific information even though
`rustc_codegen_ssa` is supposed to be somewhat generic. So I removed
them as they were misleading.
with an eye on merging `TargetOptions` into `Target`.
`TargetOptions` as a separate structure is mostly an implementation detail of `Target` construction, all its fields logically belong to `Target` and available from `Target` through `Deref` impls.