Keep unstable target features for asm feature checking
Inline assembly uses the target features to determine which registers
are available on the current target. However it needs to be able to
access unstable target features for this.
Fixes#99071
When a binding is declared without a value, borrowck verifies that all
codepaths have *one* assignment to them to initialize them fully. If
there are any cases where a condition can be met that leaves the binding
uninitialized or we attempt to initialize a field of an unitialized
binding, we emit E0381.
We now look at all the statements that initialize the binding, and use
them to explore branching code paths that *don't* and point at them. If
we find *no* potential places where an assignment to the binding might
be missing, we display the spans of all the existing initializers to
provide some context.
asm: Add a kreg0 register class on x86 which includes k0
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Don't emit non-asm contents error for naked function composed of errors
## Motivation
For naked functions an error is emitted when they are composed of anything other than a single asm!() block. However, this error triggers in a couple situations in which it adds no additional information or is actively misleading.
One example is if you do have an asm!() block but simply one with a syntax error:
```rust
#[naked]
unsafe extern "C" fn compiler_errors() {
asm!(invalid_syntax)
}
```
This results in two errors, one for the syntax error itself and another telling you that you need an asm block in your function:
```rust
error[E0787]: naked functions must contain a single asm block
--> src/main.rs:6:1
|
6 | / unsafe extern "C" fn naked_compile_error() {
7 | | asm!(blah)
8 | | }
| |_^
```
This issue also comes up when [utilizing `compile_error!()` for improving your diagnostics](https://twitter.com/steveklabnik/status/1509538243020218372), such as raising a compiler error when compiling for an unsupported target.
## Implementation
The rules this PR implements are as follows:
1. If any non-erroneous non-asm statement is included, an error will still occur
2. If multiple asm statements are included, an error will still occur
3. If 0 or 1 asm statements are present, as well as any non-zero number of erroneous statements, then this error will *not* be raised as it is likely either redundant or incorrect
The rule of thumb is effectively "if an error is present and its correction could change things, don't raise an error".
Fold aarch64 feature +fp into +neon
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
I am... pretty sure no one is relying on this.
An argument could be made that, as we are not an "entirely proprietary" toolchain, we should not support AArch64 without floats at all. I think that's a bit excessive. However, I want to recognize the intent: programming for AArch64 should be simplified where possible. For x86-64, programmers regularly set up illegal feature configurations because it's hard to understand them, see https://github.com/rust-lang/rust/issues/89586. And per the above notes, plus the discussion in https://github.com/rust-lang/rust/issues/86941, there should be no real use cases for leaving these features split: the two should in fact always go together.
- Fixesrust-lang/rust#95002.
- Fixesrust-lang/rust#95064.
- Fixesrust-lang/rust#95122.
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.