Lift `T: Sized` bounds from some `strict_provenance` pointer methods
This PR removes requirement for `T` (pointee type) to be `Sized` to call `pointer::{addr, expose_addr, with_addr, map_addr}`. These functions don't use `T`'s size, so there is no reason for them to require this. Updated public API:
cc ``@Gankra,`` #95228
r? libs-api
Add heapsort fallback in `select_nth_unstable`
Addresses #102451 and #106933.
`slice::select_nth_unstable` uses a quick select implementation based on the same pattern defeating quicksort algorithm that `slice::sort_unstable` uses. `slice::sort_unstable` uses a recursion limit and falls back to heapsort if there were too many bad pivot choices, to ensure O(n log n) worst case running time (known as introsort). However, `slice::select_nth_unstable` does not have such a fallback strategy, which leads to it having a worst case running time of O(n²) instead. #102451 links to a playground which generates pathological inputs that show this quadratic behavior. On my machine, a randomly generated slice of length `1 << 19` takes ~200µs to calculate its median, whereas a pathological input of the same length takes over 2.5s. This PR adds an iteration limit to `select_nth_unstable`, falling back to heapsort, which ensures an O(n log n) worst case running time (introselect). With this change, there was no noticable slowdown for the random input, but the same pathological input now takes only ~1.2ms. In the future it might be worth implementing something like Median of Medians or Fast Deterministic Selection instead, which guarantee O(n) running time for all possible inputs. I've left this as a `FIXME` for now and only implemented the heapsort fallback to minimize the needed code changes.
I still think we should clarify in the `select_nth_unstable` docs that the worst case running time isn't currently O(n) (the original reason that #102451 was opened), but I think it's a lot better to be able to guarantee O(n log n) instead of O(n²) for the worst case.
Remove various double spaces in the libraries.
I was just pretty bothered by this when reading the source for a function, and was suggested to check if this happened elsewhere.
reword Option::as_ref and Option::map examples
The description for the examples of `Option::as_ref` and `Option::map` imply that the example is only doing type conversion, when it is actually finding the length of a string.
Changes the wording to imply that some operation is being run on the value contained in the `Option`
closes#104476
Stabilize `::{core,std}::pin::pin!`
As discussed [over here](https://github.com/rust-lang/rust/issues/93178#issuecomment-1295843548), it looks like a decent time to stabilize the `pin!` macro.
### Public API
```rust
// in module `core::pin`
/// API: `fn pin<T>($value: T) -> Pin<&'local mut T>`
pub macro pin($value:expr $(,)?) {
…
}
```
- Tracking issue: #93178
(now all this needs is an FCP by the proper team?)
doc: rewrite doc for signed int::{carrying_add,borrowing_sub}
Reword the documentation for bigint helper methods, signed `int::{carrying_add,borrowing_sub}` (#85532).
This change is a follow-up to #101889, which was for the unsigned methods.
Don't derive Debug for `OnceWith` & `RepeatWith`
Closures don't impl Debug, so the derived impl is kinda useless. The behavior of not debug-printing closures is consistent with the rest of the iterator adapters/sources.
Suggest `impl Fn*` and `impl Future` in `-> _` return suggestions
Follow-up to #106172, only the last commit is relevant. Can rebase once that PR is landed for easier review.
Suggests `impl Future` and `impl Fn{,Mut,Once}` in `-> _` return suggestions.
r? `@estebank`