Link impl items to corresponding trait items in late resolver.
Hygienically linking trait impl items to declarations in the trait can be done directly by the late resolver. In fact, it is already done to diagnose unknown items.
This PR uses this resolution work and stores the `DefId` of the trait item in the HIR. This avoids having to do this resolution manually later.
r? `@matthewjasper`
Related to #90639. The added `trait_item_id` field can be moved to `ImplItemRef` to be used directly by your PR.
The produced library would get a main shim too which conflicts with the
main shim of the executable linking the library.
```
$ cat > main1.rs <<EOF
fn main() {}
pub fn bar() {}
EOF
$ cat > main2.rs <<EOF
extern crate main1;
fn main() {
main1::bar();
}
EOF
$ rustc --crate-type bin --crate-type lib main1.rs
$ rustc -L. main2.rs
error: linking with `cc` failed: exit status: 1
[...]
= note: /usr/bin/ld: /tmp/crate_bin_lib/libmain1.rlib(main1.main1.707747aa-cgu.0.rcgu.o): in function `main':
main1.707747aa-cgu.0:(.text.main+0x0): multiple definition of `main'; main2.main2.02a148fe-cgu.0.rcgu.o:main2.02a148fe-cgu.0:(.text.main+0x0): first defined here
collect2: error: ld returned 1 exit status
```
Do not fail evaluation in const blocks
Evaluate const blocks with a const param-env, so we properly check `~const` trait bounds.
Fixes#92713
(I will fix the poor diagnostics in #92713 and #92712 in a separate PR)
cc `@nbdd0121` who wrote the code this PR touches in #89561
Generate more precise generator names
Currently all generators are named with a `generator$N` suffix, regardless of where they come from. This means an `async fn` shows up as a generator in stack traces, which can be surprising to async programmers since they should not need to know that async functions are implementated using generators.
This change generators a different name depending on the generator kind, allowing us to tell whether the generator is the result of an async block, an async closure, an async fn, or a plain generator.
r? `@tmandry`
cc `@michaelwoerister` `@wesleywiser` `@dpaoliello`
Optimize `impl_read_unsigned_leb128`
I see instruction count improvements of up to 3.5% locally with these changes, mostly on the smaller benchmarks.
r? `@michaelwoerister`
Add `#[track_caller]` to `mirbug`
When a "'no errors encountered even though `delay_span_bug` issued" error results from the `mirbug` function, the file location information points to the `mirbug` function itself, rather than its caller. This doesn't make sense, since the caller is the real source of the bug. Adding `#[track_caller]` will produce diagnostics that are more useful to anyone fixing the ICE.
Prefer projection candidates instead of param_env candidates for Sized predicates
Fixes#89352
Also includes some drive by logging and verbose printing changes that I found useful when debugging this, but I can remove this if needed.
This is a little hacky - but imo no more than the rest of `candidate_should_be_dropped_in_favor_of`. Importantly, in a Chalk-like world, both candidates should be completely compatible.
r? ```@nikomatsakis```
rustdoc: avoid many `Symbol` to `String` conversions.
Particularly when constructing file paths and fully qualified paths.
This avoids a lot of allocations, speeding things up on almost all
examples.
r? `@GuillaumeGomez`
Rollup of 9 pull requests
Successful merges:
- #92045 (Don't fall back to crate-level opaque type definitions.)
- #92381 (Suggest `return`ing tail expressions in async functions)
- #92768 (Partially stabilize `maybe_uninit_extra`)
- #92810 (Deduplicate box deref and regular deref suggestions)
- #92818 (Update documentation for doc_cfg feature)
- #92840 (Fix some lints documentation)
- #92849 (Clippyup)
- #92854 (Use the updated Rust logo in rustdoc)
- #92864 (Fix a missing dot in the main item heading)
Failed merges:
- #92838 (Clean up some links in RELEASES)
r? `@ghost`
`@rustbot` modify labels: rollup
Deduplicate box deref and regular deref suggestions
Remove the suggestion code special-cased for Box deref.
r? ```@camelid```
since you introduced the code in #90627
Suggest `return`ing tail expressions in async functions
This PR fixes#92308.
Previously, the suggestion to `return` tail expressions (introduced in #81769) did not apply to `async` functions, as the suggestion checked whether the types were equal disregarding `impl Future<Output = T>` syntax sugar for `async` functions. This PR changes that in order to fix a potential papercut.
I'm not sure if this is the "right" way to do this, so if there is a better way then please let me know.
I amended an existing test introduced in #81769 to add a regression test for this, if you think I should make a separate test I will.
Don't fall back to crate-level opaque type definitions.
That would just hide bugs, as it works accidentally if the opaque type is defined at the crate level.
Only works after #90948 which worked by accident for our entire test suite.
This was originally introduced in #10916 as a way to remove all landing
pads when performing LTO. However this is no longer necessary today
since rustc properly marks all functions and call-sites as nounwind
where appropriate.
In fact this is incorrect in the presence of `extern "C-unwind"` which
must create a landing pad when compiled with `-C panic=abort` so that
foreign exceptions are caught and properly turned into aborts.
Swift has specific syntax that desugars to `Option<T>` similar to our
`?` operator, which means that people might try to use it in Rust. Parse
it and gracefully recover.
Currently all generators are named with a `generator$N` suffix,
regardless of where they come from. This means an `async fn` shows up as
a generator in stack traces, which can be surprising to async
programmers since they should not need to know that async functions are
implementated using generators.
This change generators a different name depending on the generator kind,
allowing us to tell whether the generator is the result of an async
block, an async closure, an async fn, or a plain generator.