Commit Graph

3948 Commits

Author SHA1 Message Date
许杰友 Jieyou Xu (Joe)
96e8c7c7ba Rollup merge of #133366 - compiler-errors:expected-found, r=dtolnay
Remove unnecessary bool from `ExpectedFound::new`

It's true almost everywhere, and the one place it's not can be replaced w/ an if statement.
2024-11-23 20:19:54 +08:00
Michael Goulet
d294e4746b Remove unnecessary bool from ExpectedFound 2024-11-23 04:51:31 +00:00
Michael Goulet
5a0086f351 Rollup merge of #132090 - compiler-errors:baily, r=lcnr
Stop being so bail-y in candidate assembly

A conceptual follow-up to #132084. We gotta stop bailing so much when there are errors; it's both unnecessary, leads to weird knock-on errors, and it's messing up the vibes lol
2024-11-22 21:07:38 -05:00
许杰友 Jieyou Xu (Joe)
74b8522855 Rollup merge of #133323 - compiler-errors:bail-if-self-var, r=lcnr
Bail in effects in old solver if self ty is ty var

Otherwise when we try to check something like `?t: ~const Trait` we'll immediately stick it to the first param-env candidate, lol.

r? lcnr
2024-11-22 20:32:37 +08:00
Michael Goulet
8dfed4ec98 Bail in effects in old solver if self ty is ty var 2024-11-22 03:12:50 +00:00
Michael Goulet
357665dae9 Simplify fulfill_implication 2024-11-22 01:03:17 +00:00
Michael Goulet
0465f71d60 Stop being so bail-y in candidate assembly 2024-11-21 01:35:34 +00:00
Michael Goulet
06e66d78c3 Rip out built-in PointerLike impl 2024-11-20 16:13:57 +00:00
lcnr
002efeb72a additional TypingEnv cleanups 2024-11-19 21:36:23 +01:00
lcnr
4813fda2e6 rustdoc: yeet TypingEnv::from_param_env 2024-11-19 18:35:41 +01:00
lcnr
9cba14b95b use TypingEnv when no infcx is available
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
2024-11-18 10:38:56 +01:00
Boxy
6dad074907 Handle infer vars in anon consts on stable 2024-11-12 21:36:42 +00:00
Boxy
bea0148ac6 Consolidate type system const evaluation under traits::evaluate_const
mew
2024-11-12 02:54:03 +00:00
bors
c07aa1e171 Auto merge of #132625 - compiler-errors:cache-only-if-opaque, r=lcnr
Only disable cache if predicate has opaques within it

This is an alternative to https://github.com/rust-lang/rust/pull/132075.

This refines the check implemented in https://github.com/rust-lang/rust/pull/126024 to only disable the global cache if the predicate being considered has opaques in it. This is still theoretically unsound, since goals can indirectly rely on opaques in the defining scope, but we're much less likely to hit it.

It doesn't totally fix https://github.com/rust-lang/rust/issues/132064: for example, `lemmy` goes from 1:29 (on rust 1.81) to 9:53 (on nightly) to 4:07 (after this PR). But I think it's at least *more* sound than a total revert :/

r? lcnr
2024-11-06 21:22:14 +00:00
Michael Goulet
49153739fd Only disable cache if predicate has opaques within it 2024-11-05 17:38:26 +00:00
bors
096277e989 Auto merge of #132580 - compiler-errors:globs, r=Noratrieb
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`

We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.

`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.

This PR is a bit large, but it's just naming.

The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.

r? `@noratrieb` or reassign
2024-11-05 08:30:56 +00:00
Matthias Krüger
c89a6cd0ad Rollup merge of #132486 - compiler-errors:no-binder, r=lcnr
No need to instantiate binder in `confirm_async_closure_candidate`

Removes a FIXME that is redundant. No longer needed since #122267.
2024-11-04 18:12:45 +01:00
Michael Goulet
d458f850aa ty::BrK -> ty::BoundRegionKind::K 2024-11-04 04:45:52 +00:00
Michael Goulet
8e6af16192 Remove the trivial constkind imports 2024-11-04 04:45:51 +00:00
Michael Goulet
6b96103bf3 Rename the FIXMEs, remove a few that dont matter anymore 2024-11-03 18:59:41 +00:00
Jubilee Young
4046e3610c compiler: Replace rustc_target with _abi in _trait_selection 2024-11-02 20:31:47 -07:00
Michael Goulet
c10fe34fb9 No need to instantiate binder in confirm_async_closure_candidate 2024-11-02 03:10:37 +00:00
lcnr
dc750665ae normalization folders, yeet ParamEnv::reveal 2024-10-31 14:55:53 +01:00
lcnr
84295b917d traits::project: yeet ParamEnv::reveal 2024-10-31 12:06:19 +01:00
Jubilee
7b19508abe Rollup merge of #132344 - compiler-errors:same-thing, r=lcnr
Merge `HostPolarity` and `BoundConstness`

They're basically the same thing, and I think `BoundConstness` is easier to use.

r? fee1-dead or reassign
2024-10-30 14:01:38 -07:00
Jubilee
847b6fe6b0 Rollup merge of #132246 - workingjubilee:campaign-on-irform, r=compiler-errors
Rename `rustc_abi::Abi` to `BackendRepr`

Remove the confabulation of `rustc_abi::Abi` with what "ABI" actually means by renaming it to `BackendRepr`, and rename `Abi::Aggregate` to `BackendRepr::Memory`. The type never actually represented how things are passed, as that has to have `PassMode` considered, at minimum, but rather it just is how we represented some things to the backend. This conflation arose because LLVM, the primary backend at the time, would lower certain IR forms using certain ABIs. Even that only somewhat was true, as it broke down when one ventured significantly afield of what is described by the System V AMD64 ABI either by using different architectures, ABI-modifying IR annotations, the same architecture **with different ISA extensions enabled**, or other... unexpected delights.

Unfortunately both names are still somewhat of a misnomer right now, as people have written code for years based on this misunderstanding. Still, their original names are even moreso, and for better or worse, this backend code hasn't received as much maintenance as the rest of the compiler, lately. Actually arriving at a correct end-state will simply require us to disentangle a lot of code in order to fix, much of it pointlessly repeated in several places. Thus this is not an "actual fix", just a way to deflect further misunderstandings.
2024-10-30 14:01:37 -07:00
Michael Goulet
802f3a78a6 Merge HostPolarity and BoundConstness 2024-10-30 16:23:16 +00:00
Jubilee Young
7086dd83cc compiler: rustc_abi::Abi => BackendRepr
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.

Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
  we "actually" want this value to be handled, so we leave the backend
  interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
  others it is in fact using memory, and in some cases it is a scalar!

Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
2024-10-29 14:56:00 -07:00
lcnr
524a22e790 rebase 2024-10-29 17:07:32 +01:00
lcnr
f51ec110a7 TypingMode 🤔 2024-10-29 17:01:24 +01:00
Michael Goulet
8b7b8e5f56 Hack out effects support for old solver 2024-10-28 21:42:14 +00:00
Michael Goulet
7f54b9ecef Remove ObligationCause::span() method 2024-10-27 23:54:06 +00:00
Ralf Jung
8849ac6042 tcx.is_const_fn doesn't work the way it is described, remove it
Then we can rename the _raw functions to drop their suffix, and instead
explicitly use is_stable_const_fn for the few cases where that is really what
you want.
2024-10-25 20:52:39 +02:00
bors
1d4a7670d4 Auto merge of #131985 - compiler-errors:const-pred, r=fee1-dead
Represent trait constness as a distinct predicate

cc `@rust-lang/project-const-traits`
r? `@ghost` for now

Also mirrored everything that is written below on this hackmd here: https://hackmd.io/`@compiler-errors/r12zoixg1l`

# Tl;dr:

* This PR removes the bulk of the old effect desugaring.
* This PR reimplements most of the effect desugaring as a new predicate and set of a couple queries. I believe it majorly simplifies the implementation and allows us to move forward more easily on its implementation.

I'm putting this up both as a request for comments and a vibe-check, but also as a legitimate implementation that I'd like to see land (though no rush of course on that last part).

## Background

### Early days

Once upon a time, we represented trait constness in the param-env and in `TraitPredicate`. This was very difficult to implement correctly; it had bugs and was also incomplete; I don't think this was anyone's fault though, it was just the limit of experimental knowledge we had at that point.

Dealing with `~const` within predicates themselves meant dealing with constness all throughout the trait solver. This was difficult to keep track of, and afaict was not handled well with all the corners of candidate assembly.

Specifically, we had to (in various places) remap constness according to the param-env constness:

574b64a97f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1498)

This was annoying and manual and also error prone.

### Beginning of the effects desugaring

Later on, #113210 reimplemented a new desugaring for const traits via a `<const HOST: bool>` predicate. This essentially "reified" the const checking and separated it from any of the remapping or separate tracking in param-envs. For example, if I was in a const-if-const environment, but I wanted to call a trait that was non-const, this reification would turn the constness mismatch into a simple *type* mismatch of the effect parameter.

While this was a monumental step towards straightening out const trait checking in the trait system, it had its own issues, since that meant that the constness of a trait (or any item within it, like an associated type) was *early-bound*. This essentially meant that `<T as Trait>::Assoc` was *distinct* from `<T as ~const Trait>::Assoc`, which was bad.

### Associated-type bound based effects desugaring

After this, #120639 implemented a new effects desugaring. This used an associated type to more clearly represent the fact that the constness is not an input parameter of a trait, but a property that could be computed of a impl. The write-up linked in that PR explains it better than I could.

However, I feel like it really reached the limits of what can comfortably be expressed in terms of associated type and trait calculus. Also, `<const HOST: bool>` remains a synthetic const parameter, which is observable in nested items like RPITs and closures, and comes with tons of its own hacks in the astconv and middle layer.

For example, there are pieces of unintuitive code that are needed to represent semantics like elaboration, and eventually will be needed to make error reporting intuitive, and hopefully in the future assist us in implementing built-in traits (eventually we'll want something like `~const Fn` trait bounds!).

elaboration hack: 8069f8d17a/compiler/rustc_type_ir/src/elaborate.rs (L133-L195)

trait bound remapping hack for diagnostics: 8069f8d17a/compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs (L2370-L2413)

I want to be clear that I don't think this is a issue of implementation quality or anything like that; I think it's simply a very clear sign that we're using types and traits in a way that they're not fundamentally supposed to be used, especially given that constness deserves to be represented as a first-class concept.

### What now?

This PR implements a new desugaring for const traits. Specifically, it introduces a `HostEffect` predicate to represent the obligation an impl is const, rather than using associated type bounds and the compat trait that exists for effects today.

### `HostEffect` predicate

A `HostEffect` clause has two parts -- the `TraitRef` we're trying to prove, and a `HostPolarity::{Maybe, Const}`.

`HostPolarity::Const` corresponds to `T: const Trait` bounds, which must *always* be proven as const, and which can be written in any context. These are lowered directly into the predicates of an item, since they're not "context-specific".

On the other hand, `HostPolarity::Maybe` corresponds to `T: ~const Trait` bounds which must only exist in a conditionally-const context like a method in a `#[const_trait]`, or a `const fn` free function. We do not lower these immediately into the predicates of an item; instead, we collect them into a new query called the **`const_conditions`**. These are the set of trait refs that we need to prove have const implementations for an item to be const.

Notably, they're represented as bare (poly) trait refs because they are meant to be paired back together with a `HostPolarity` when they're being registered in typeck (see next section).

For example, given:

```rust
const fn foo<T: ~const A + const B>() {}
```

`foo`'s const conditions would contain `T: A`, but not `T: B`. On the flip side, foo's predicates (`predicates_of`) query would contain `HostEffect(T: B, HostPolarity::Const)` but not `HostEffect(T: A, HostPolarity::Maybe)` since we don't need to prove that predicate in a non-const environment (and it's not even the right predicate to prove in an unconditionally const environment).

### Type checking const bodies

When type checking bodies in HIR, when we encounter a call expression, we additionally register the callee item's const conditions with the `HostPolarity` from the body we're typechecking (`Const` for unconditionally const things like `const`/`static` items, and `Maybe` for conditionally const things like const fns; and we don't register `HostPolarity` predicates for non-const bodies).

When type-checking a conditionally const body, we augment its param-env with `HostEffect(..., Maybe)` predicates.

### Checking that const impls are WF

We extend the logic in `compare_method_predicate_entailment` to also check the const-conditions of the impl method, to make sure that we error for:

```rust
#[const_trait] Bar {}
#[const_trait] trait Foo {
    fn method<T: Bar>();
}

impl Foo for () {
    fn method<T: ~const Bar>() {} // stronger assumption!
}
```

We also extend the WF check for impls to register the const conditions of the trait that is being implemented. This is to make sure we error for:

```rust
#[const_trait] trait Bar {}
#[const_trait] trait Foo<T> where T: ~const Bar {}

impl<T> const Foo<T> for () {}
//~^ `T: ~const Bar` is missing!
```

### Proving a `HostEffect` predicate

We have several ways of proving a `HostEffect` predicate:

1. Matching a `HostEffect` predicate from the param-env
2. From an impl - we do impl selection very similar to confirming a trait goal, except we filter for only const impls, and we additionally register the impl's const conditions (i.e. the impl's `~const` where clauses).

Later I expect that we will add more built-in implementations for things like `Fn`.

## What next?

After this PR, I'd like to split out the work more so it can proceed in parallel and probably amongst others that are not me.

* Register `HostEffect` goal for places in HIR typeck that correspond to call terminators, like autoderef.
* Make traits in libstd const again.
    * Probably need to impl host effect preds in old solver.
* Implement built-in `HostEffect` rules for traits like `Fn`.
* Rip out const checking from MIR altogether.

## So what?

This ends up being super convenient basically everywhere in the compiler. Due to the design of the new trait solver, we end up having an almost parallel structure to the existing trait and projection predicates for assembling `HostEffect` predicates; adding new candidates and especially new built-in implementations is now basically trivial, and it's quite straightforward to understand the confirmation logic for these predicates.

Same with diagnostics reporting; since we have predicates which represent the obligation to prove an impl is const, we can simplify and make these diagnostics richer without having to write a ton of logic to intercept and rewrite the existing `Compat` trait errors.

Finally, it gives us a much more straightforward path for supporting the const effect on the old trait solver. I'm personally quite passionate about getting const trait support into the hands of users without having to wait until the new solver lands[^1], so I think after this PR lands we can begin to gauge how difficult it would be to implement constness in the old trait solver too. This PR will not do this yet.

[^1]: Though this is not a prerequisite or by any means the only justification for this PR.
2024-10-24 17:33:42 +00:00
Michael Goulet
cde29b9ec9 Implement const effect predicate in new solver 2024-10-24 09:46:36 +00:00
Michael Goulet
a16d491054 Remove associated type based effects logic 2024-10-24 09:46:36 +00:00
Michael Goulet
d8dc31fd3d Consider param-env candidates even if they have errors 2024-10-24 01:48:44 +00:00
Ralf Jung
ad3991d303 nightly feature tracking: get rid of the per-feature bool fields 2024-10-23 09:14:41 +01:00
bors
814df6e50e Auto merge of #131840 - compiler-errors:impossible-maybe, r=lcnr
Dont consider predicates that may hold as impossible in `is_impossible_associated_item`

Use infer vars to account for ambiguities when considering if methods are impossible to instantiate for a given self type. Also while we're at it, let's use the new trait solver instead of `evaluate` since this is used in rustdoc.

r? lcnr
Fixes #131839
2024-10-21 22:58:44 +00:00
lcnr
b64b25b99e normalizes-to disable infer var check 2024-10-21 16:25:42 +02:00
bors
93742bd782 Auto merge of #131988 - matthiaskrgr:rollup-tx173wn, r=matthiaskrgr
Rollup of 4 pull requests

Successful merges:

 - #126588 (Added more scenarios where comma to be removed in the function arg)
 - #131728 (bootstrap: extract builder cargo to its own module)
 - #131968 (Rip out old effects var handling code from traits)
 - #131981 (Remove the `BoundConstness::NotConst` variant)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-21 06:13:34 +00:00
Michael Goulet
6f6f91ab82 Rip out old effects var handling code from traits 2024-10-20 13:40:22 +00:00
Michael Goulet
9453d2cfeb Fix transmute goal 2024-10-19 18:07:35 +00:00
Michael Goulet
38bbcc001e Rename normalize to normalize_internal, remove unnecessary usages 2024-10-19 18:07:35 +00:00
许杰友 Jieyou Xu (Joe)
765e8c75b0 Rollup merge of #131864 - lrh2000:upcast_reorder, r=WaffleLapkin
Never emit `vptr` for empty/auto traits

Emiting `vptr`s for empty/auto traits is unnecessary (#114942) and causes unsoundness in `trait_upcasting` (#131813). This PR should ensure that we never emit vtables for such traits. See the linked issues for more details.

I'm not sure if I can add tests for the vtable layout. So this PR only adds tests for the soundness hole (i.e., the segmentation fault will disappear after this PR).

Fixes #114942
Fixes #131813

Cc #65991 (tracking issue for `trait_upcasting`)

r? `@WaffleLapkin`  (per https://github.com/rust-lang/rust/issues/131813#issuecomment-2419969745)
2024-10-18 14:52:25 +01:00
Ruihan Li
781bff0499 Never emit vptr for empty/auto traits 2024-10-18 12:34:56 +08:00
Michael Goulet
e3800a1a04 Allow dropping dyn principal 2024-10-17 20:43:31 +02:00
Michael Goulet
8ff8f78e4c Dont consider predicates that may hold as impossible in is_impossible_associated_item 2024-10-17 12:32:31 -04:00
lcnr
3360c1773a move defining_opaque_types out of Canonical 2024-10-17 10:22:52 +02:00
lcnr
f3ce557fcd DropckOutlives to rustc_middle 2024-10-17 09:53:27 +02:00