implement log1p and log1pf
This commit is contained in:
@@ -114,7 +114,6 @@ pub trait F32Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp_m1(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln_1p(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
@@ -295,7 +294,6 @@ impl F32Ext for f32 {
|
||||
expm1f(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln_1p(self) -> Self {
|
||||
log1pf(self)
|
||||
@@ -432,7 +430,6 @@ pub trait F64Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp_m1(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln_1p(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
@@ -616,7 +613,6 @@ impl F64Ext for f64 {
|
||||
expm1(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln_1p(self) -> Self {
|
||||
log1p(self)
|
||||
|
||||
142
library/compiler-builtins/libm/src/math/log1p.rs
Normal file
142
library/compiler-builtins/libm/src/math/log1p.rs
Normal file
@@ -0,0 +1,142 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double log1p(double x)
|
||||
* Return the natural logarithm of 1+x.
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log(1+f): See log.c
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
pub fn log1p(x: f64) -> f64 {
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let hfsq: f64;
|
||||
let mut f: f64 = 0.;
|
||||
let mut c: f64 = 0.;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let w: f64;
|
||||
let t1: f64;
|
||||
let t2: f64;
|
||||
let dk: f64;
|
||||
let hx: u32;
|
||||
let mut hu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
hx = (ui >> 32) as u32;
|
||||
k = 1;
|
||||
if hx < 0x3fda827a || (hx >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if hx >= 0xbff00000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1) = -inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
|
||||
}
|
||||
if hx << 1 < 0x3ca00000 << 1 {
|
||||
/* |x| < 2**-53 */
|
||||
/* underflow if subnormal */
|
||||
if (hx & 0x7ff00000) == 0 {
|
||||
force_eval!(x as f32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if hx <= 0xbfd2bec4 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
hu = (ui >> 32) as u32;
|
||||
hu += 0x3ff00000 - 0x3fe6a09e;
|
||||
k = (hu >> 20) as i32 - 0x3ff;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 54 {
|
||||
c = if k >= 2 {
|
||||
1. - (f64::from_bits(ui) - x)
|
||||
} else {
|
||||
x - (f64::from_bits(ui) - 1.)
|
||||
};
|
||||
c /= f64::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
hu = (hu & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = (hu as u64) << 32 | (ui & 0xffffffff);
|
||||
f = f64::from_bits(ui) - 1.;
|
||||
}
|
||||
hfsq = 0.5 * f * f;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
r = t2 + t1;
|
||||
dk = k as f64;
|
||||
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
97
library/compiler-builtins/libm/src/math/log1pf.rs
Normal file
97
library/compiler-builtins/libm/src/math/log1pf.rs
Normal file
@@ -0,0 +1,97 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
|
||||
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
|
||||
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
|
||||
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
|
||||
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
|
||||
|
||||
pub fn log1pf(x: f32) -> f32 {
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let hfsq: f32;
|
||||
let mut f: f32 = 0.;
|
||||
let mut c: f32 = 0.;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let w: f32;
|
||||
let t1: f32;
|
||||
let t2: f32;
|
||||
let dk: f32;
|
||||
let ix: u32;
|
||||
let mut iu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
ix = ui;
|
||||
k = 1;
|
||||
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if ix >= 0xbf800000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1)=+inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if ix << 1 < 0x33800000 << 1 {
|
||||
/* |x| < 2**-24 */
|
||||
/* underflow if subnormal */
|
||||
if (ix & 0x7f800000) == 0 {
|
||||
force_eval!(x * x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if ix <= 0xbe95f619 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if ix >= 0x7f800000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
iu = ui;
|
||||
iu += 0x3f800000 - 0x3f3504f3;
|
||||
k = (iu >> 23) as i32 - 0x7f;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 25 {
|
||||
c = if k >= 2 {
|
||||
1. - (f32::from_bits(ui) - x)
|
||||
} else {
|
||||
x - (f32::from_bits(ui) - 1.)
|
||||
};
|
||||
c /= f32::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
iu = (iu & 0x007fffff) + 0x3f3504f3;
|
||||
ui = iu;
|
||||
f = f32::from_bits(ui) - 1.;
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * LG4);
|
||||
t2 = z * (LG1 + w * LG3);
|
||||
r = t2 + t1;
|
||||
hfsq = 0.5 * f * f;
|
||||
dk = k as f32;
|
||||
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
@@ -18,6 +18,8 @@ mod hypotf;
|
||||
mod log;
|
||||
mod log10;
|
||||
mod log10f;
|
||||
mod log1p;
|
||||
mod log1pf;
|
||||
mod log2;
|
||||
mod log2f;
|
||||
mod logf;
|
||||
@@ -35,9 +37,9 @@ mod truncf;
|
||||
|
||||
pub use self::{
|
||||
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmodf::fmodf,
|
||||
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log2::log2, log2f::log2f,
|
||||
logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn, scalbnf::scalbnf,
|
||||
sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
|
||||
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log1p::log1p,
|
||||
log1pf::log1pf, log2::log2, log2f::log2f, logf::logf, powf::powf, round::round, roundf::roundf,
|
||||
scalbn::scalbn, scalbnf::scalbnf, sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
|
||||
};
|
||||
|
||||
fn isnanf(x: f32) -> bool {
|
||||
|
||||
@@ -664,6 +664,7 @@ f32_f32! {
|
||||
expf,
|
||||
// fdimf,
|
||||
log10f,
|
||||
log1pf,
|
||||
log2f,
|
||||
logf,
|
||||
roundf,
|
||||
@@ -708,7 +709,7 @@ f64_f64! {
|
||||
floor,
|
||||
log,
|
||||
log10,
|
||||
// log1p,
|
||||
log1p,
|
||||
log2,
|
||||
round,
|
||||
// sin,
|
||||
|
||||
Reference in New Issue
Block a user