implement log1p and log1pf

This commit is contained in:
Erik
2018-07-14 01:28:00 -04:00
parent ed51aa3a97
commit f73c61b762
5 changed files with 246 additions and 8 deletions

View File

@@ -114,7 +114,6 @@ pub trait F32Ext: private::Sealed {
#[cfg(todo)] #[cfg(todo)]
fn exp_m1(self) -> Self; fn exp_m1(self) -> Self;
#[cfg(todo)]
fn ln_1p(self) -> Self; fn ln_1p(self) -> Self;
#[cfg(todo)] #[cfg(todo)]
@@ -295,7 +294,6 @@ impl F32Ext for f32 {
expm1f(self) expm1f(self)
} }
#[cfg(todo)]
#[inline] #[inline]
fn ln_1p(self) -> Self { fn ln_1p(self) -> Self {
log1pf(self) log1pf(self)
@@ -432,7 +430,6 @@ pub trait F64Ext: private::Sealed {
#[cfg(todo)] #[cfg(todo)]
fn exp_m1(self) -> Self; fn exp_m1(self) -> Self;
#[cfg(todo)]
fn ln_1p(self) -> Self; fn ln_1p(self) -> Self;
#[cfg(todo)] #[cfg(todo)]
@@ -616,7 +613,6 @@ impl F64Ext for f64 {
expm1(self) expm1(self)
} }
#[cfg(todo)]
#[inline] #[inline]
fn ln_1p(self) -> Self { fn ln_1p(self) -> Self {
log1p(self) log1p(self)

View File

@@ -0,0 +1,142 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double log1p(double x)
* Return the natural logarithm of 1+x.
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log(1+f): See log.c
*
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
use core::f64;
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
pub fn log1p(x: f64) -> f64 {
let mut ui: u64 = x.to_bits();
let hfsq: f64;
let mut f: f64 = 0.;
let mut c: f64 = 0.;
let s: f64;
let z: f64;
let r: f64;
let w: f64;
let t1: f64;
let t2: f64;
let dk: f64;
let hx: u32;
let mut hu: u32;
let mut k: i32;
hx = (ui >> 32) as u32;
k = 1;
if hx < 0x3fda827a || (hx >> 31) > 0 {
/* 1+x < sqrt(2)+ */
if hx >= 0xbff00000 {
/* x <= -1.0 */
if x == -1. {
return x / 0.0; /* log1p(-1) = -inf */
}
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
}
if hx << 1 < 0x3ca00000 << 1 {
/* |x| < 2**-53 */
/* underflow if subnormal */
if (hx & 0x7ff00000) == 0 {
force_eval!(x as f32);
}
return x;
}
if hx <= 0xbfd2bec4 {
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0.;
f = x;
}
} else if hx >= 0x7ff00000 {
return x;
}
if k > 0 {
ui = (1. + x).to_bits();
hu = (ui >> 32) as u32;
hu += 0x3ff00000 - 0x3fe6a09e;
k = (hu >> 20) as i32 - 0x3ff;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if k < 54 {
c = if k >= 2 {
1. - (f64::from_bits(ui) - x)
} else {
x - (f64::from_bits(ui) - 1.)
};
c /= f64::from_bits(ui);
} else {
c = 0.;
}
/* reduce u into [sqrt(2)/2, sqrt(2)] */
hu = (hu & 0x000fffff) + 0x3fe6a09e;
ui = (hu as u64) << 32 | (ui & 0xffffffff);
f = f64::from_bits(ui) - 1.;
}
hfsq = 0.5 * f * f;
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (LG2 + w * (LG4 + w * LG6));
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
r = t2 + t1;
dk = k as f64;
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
}

View File

@@ -0,0 +1,97 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use core::f32;
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
pub fn log1pf(x: f32) -> f32 {
let mut ui: u32 = x.to_bits();
let hfsq: f32;
let mut f: f32 = 0.;
let mut c: f32 = 0.;
let s: f32;
let z: f32;
let r: f32;
let w: f32;
let t1: f32;
let t2: f32;
let dk: f32;
let ix: u32;
let mut iu: u32;
let mut k: i32;
ix = ui;
k = 1;
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
/* 1+x < sqrt(2)+ */
if ix >= 0xbf800000 {
/* x <= -1.0 */
if x == -1. {
return x / 0.0; /* log1p(-1)=+inf */
}
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
}
if ix << 1 < 0x33800000 << 1 {
/* |x| < 2**-24 */
/* underflow if subnormal */
if (ix & 0x7f800000) == 0 {
force_eval!(x * x);
}
return x;
}
if ix <= 0xbe95f619 {
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0.;
f = x;
}
} else if ix >= 0x7f800000 {
return x;
}
if k > 0 {
ui = (1. + x).to_bits();
iu = ui;
iu += 0x3f800000 - 0x3f3504f3;
k = (iu >> 23) as i32 - 0x7f;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if k < 25 {
c = if k >= 2 {
1. - (f32::from_bits(ui) - x)
} else {
x - (f32::from_bits(ui) - 1.)
};
c /= f32::from_bits(ui);
} else {
c = 0.;
}
/* reduce u into [sqrt(2)/2, sqrt(2)] */
iu = (iu & 0x007fffff) + 0x3f3504f3;
ui = iu;
f = f32::from_bits(ui) - 1.;
}
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (LG2 + w * LG4);
t2 = z * (LG1 + w * LG3);
r = t2 + t1;
hfsq = 0.5 * f * f;
dk = k as f32;
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
}

View File

@@ -18,6 +18,8 @@ mod hypotf;
mod log; mod log;
mod log10; mod log10;
mod log10f; mod log10f;
mod log1p;
mod log1pf;
mod log2; mod log2;
mod log2f; mod log2f;
mod logf; mod logf;
@@ -35,9 +37,9 @@ mod truncf;
pub use self::{ pub use self::{
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmodf::fmodf, ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmodf::fmodf,
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log2::log2, log2f::log2f, hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log1p::log1p,
logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn, scalbnf::scalbnf, log1pf::log1pf, log2::log2, log2f::log2f, logf::logf, powf::powf, round::round, roundf::roundf,
sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf, scalbn::scalbn, scalbnf::scalbnf, sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
}; };
fn isnanf(x: f32) -> bool { fn isnanf(x: f32) -> bool {

View File

@@ -664,6 +664,7 @@ f32_f32! {
expf, expf,
// fdimf, // fdimf,
log10f, log10f,
log1pf,
log2f, log2f,
logf, logf,
roundf, roundf,
@@ -708,7 +709,7 @@ f64_f64! {
floor, floor,
log, log,
log10, log10,
// log1p, log1p,
log2, log2,
round, round,
// sin, // sin,