Add 'compiler/rustc_codegen_gcc/' from commit 'afae271d5d3719eeb92c18bc004bb6d1965a5f3f'

git-subtree-dir: compiler/rustc_codegen_gcc
git-subtree-mainline: ae90dcf020
git-subtree-split: afae271d5d
This commit is contained in:
Antoni Boucher
2021-08-12 21:53:49 -04:00
80 changed files with 15608 additions and 0 deletions

View File

@@ -0,0 +1,286 @@
use gccjit::{ToRValue, Type};
use rustc_codegen_ssa::traits::{AbiBuilderMethods, BaseTypeMethods};
use rustc_middle::bug;
use rustc_middle::ty::Ty;
use rustc_target::abi::call::{CastTarget, FnAbi, PassMode, Reg, RegKind};
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::intrinsic::ArgAbiExt;
use crate::type_of::LayoutGccExt;
impl<'a, 'gcc, 'tcx> AbiBuilderMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
fn apply_attrs_callsite(&mut self, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>, _callsite: Self::Value) {
// TODO
//fn_abi.apply_attrs_callsite(self, callsite)
}
fn get_param(&self, index: usize) -> Self::Value {
self.cx.current_func.borrow().expect("current func")
.get_param(index as i32)
.to_rvalue()
}
}
impl GccType for CastTarget {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> {
let rest_gcc_unit = self.rest.unit.gcc_type(cx);
let (rest_count, rem_bytes) =
if self.rest.unit.size.bytes() == 0 {
(0, 0)
}
else {
(self.rest.total.bytes() / self.rest.unit.size.bytes(), self.rest.total.bytes() % self.rest.unit.size.bytes())
};
if self.prefix.iter().all(|x| x.is_none()) {
// Simplify to a single unit when there is no prefix and size <= unit size
if self.rest.total <= self.rest.unit.size {
return rest_gcc_unit;
}
// Simplify to array when all chunks are the same size and type
if rem_bytes == 0 {
return cx.type_array(rest_gcc_unit, rest_count);
}
}
// Create list of fields in the main structure
let mut args: Vec<_> = self
.prefix
.iter()
.flat_map(|option_kind| {
option_kind.map(|kind| Reg { kind, size: self.prefix_chunk_size }.gcc_type(cx))
})
.chain((0..rest_count).map(|_| rest_gcc_unit))
.collect();
// Append final integer
if rem_bytes != 0 {
// Only integers can be really split further.
assert_eq!(self.rest.unit.kind, RegKind::Integer);
args.push(cx.type_ix(rem_bytes * 8));
}
cx.type_struct(&args, false)
}
}
pub trait GccType {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc>;
}
impl GccType for Reg {
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, '_>) -> Type<'gcc> {
match self.kind {
RegKind::Integer => cx.type_ix(self.size.bits()),
RegKind::Float => {
match self.size.bits() {
32 => cx.type_f32(),
64 => cx.type_f64(),
_ => bug!("unsupported float: {:?}", self),
}
},
RegKind::Vector => unimplemented!(), //cx.type_vector(cx.type_i8(), self.size.bytes()),
}
}
}
pub trait FnAbiGccExt<'gcc, 'tcx> {
// TODO: return a function pointer type instead?
fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> (Type<'gcc>, Vec<Type<'gcc>>, bool);
fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
/*fn llvm_cconv(&self) -> llvm::CallConv;
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value);
fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value);*/
}
impl<'gcc, 'tcx> FnAbiGccExt<'gcc, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
fn gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> (Type<'gcc>, Vec<Type<'gcc>>, bool) {
let args_capacity: usize = self.args.iter().map(|arg|
if arg.pad.is_some() {
1
}
else {
0
} +
if let PassMode::Pair(_, _) = arg.mode {
2
} else {
1
}
).sum();
let mut argument_tys = Vec::with_capacity(
if let PassMode::Indirect { .. } = self.ret.mode {
1
}
else {
0
} + args_capacity,
);
let return_ty =
match self.ret.mode {
PassMode::Ignore => cx.type_void(),
PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_gcc_type(cx),
PassMode::Cast(cast) => cast.gcc_type(cx),
PassMode::Indirect { .. } => {
argument_tys.push(cx.type_ptr_to(self.ret.memory_ty(cx)));
cx.type_void()
}
};
for arg in &self.args {
// add padding
if let Some(ty) = arg.pad {
argument_tys.push(ty.gcc_type(cx));
}
let arg_ty = match arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => arg.layout.immediate_gcc_type(cx),
PassMode::Pair(..) => {
argument_tys.push(arg.layout.scalar_pair_element_gcc_type(cx, 0, true));
argument_tys.push(arg.layout.scalar_pair_element_gcc_type(cx, 1, true));
continue;
}
PassMode::Indirect { extra_attrs: Some(_), .. } => {
/*let ptr_ty = cx.tcx.mk_mut_ptr(arg.layout.ty);
let ptr_layout = cx.layout_of(ptr_ty);
argument_tys.push(ptr_layout.scalar_pair_element_gcc_type(cx, 0, true));
argument_tys.push(ptr_layout.scalar_pair_element_gcc_type(cx, 1, true));*/
unimplemented!();
//continue;
}
PassMode::Cast(cast) => cast.gcc_type(cx),
PassMode::Indirect { extra_attrs: None, .. } => cx.type_ptr_to(arg.memory_ty(cx)),
};
argument_tys.push(arg_ty);
}
(return_ty, argument_tys, self.c_variadic)
}
fn ptr_to_gcc_type(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
let (return_type, params, variadic) = self.gcc_type(cx);
let pointer_type = cx.context.new_function_pointer_type(None, return_type, &params, variadic);
pointer_type
}
/*fn llvm_cconv(&self) -> llvm::CallConv {
match self.conv {
Conv::C | Conv::Rust => llvm::CCallConv,
Conv::AmdGpuKernel => llvm::AmdGpuKernel,
Conv::ArmAapcs => llvm::ArmAapcsCallConv,
Conv::Msp430Intr => llvm::Msp430Intr,
Conv::PtxKernel => llvm::PtxKernel,
Conv::X86Fastcall => llvm::X86FastcallCallConv,
Conv::X86Intr => llvm::X86_Intr,
Conv::X86Stdcall => llvm::X86StdcallCallConv,
Conv::X86ThisCall => llvm::X86_ThisCall,
Conv::X86VectorCall => llvm::X86_VectorCall,
Conv::X86_64SysV => llvm::X86_64_SysV,
Conv::X86_64Win64 => llvm::X86_64_Win64,
}
}
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) {
// FIXME(eddyb) can this also be applied to callsites?
if self.ret.layout.abi.is_uninhabited() {
llvm::Attribute::NoReturn.apply_llfn(llvm::AttributePlace::Function, llfn);
}
// FIXME(eddyb, wesleywiser): apply this to callsites as well?
if !self.can_unwind {
llvm::Attribute::NoUnwind.apply_llfn(llvm::AttributePlace::Function, llfn);
}
let mut i = 0;
let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn, ty);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn, None);
}
PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.gcc_type(cx))),
_ => {}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new(), None);
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
apply(attrs, Some(arg.layout.gcc_type(cx)))
}
PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
apply(attrs, None);
apply(extra_attrs, None);
}
PassMode::Pair(ref a, ref b) => {
apply(a, None);
apply(b, None);
}
PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
}
}
}
fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value) {
// FIXME(wesleywiser, eddyb): We should apply `nounwind` and `noreturn` as appropriate to this callsite.
let mut i = 0;
let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite, ty);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite, None);
}
PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.gcc_type(bx))),
_ => {}
}
if let abi::Abi::Scalar(ref scalar) = self.ret.layout.abi {
// If the value is a boolean, the range is 0..2 and that ultimately
// become 0..0 when the type becomes i1, which would be rejected
// by the LLVM verifier.
if let Int(..) = scalar.value {
if !scalar.is_bool() {
let range = scalar.valid_range_exclusive(bx);
if range.start != range.end {
bx.range_metadata(callsite, range);
}
}
}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new(), None);
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
apply(attrs, Some(arg.layout.gcc_type(bx)))
}
PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
apply(attrs, None);
apply(extra_attrs, None);
}
PassMode::Pair(ref a, ref b) => {
apply(a, None);
apply(b, None);
}
PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
}
}
let cconv = self.llvm_cconv();
if cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, cconv);
}
}*/
}

View File

@@ -0,0 +1,115 @@
//use crate::attributes;
use gccjit::{FunctionType, ToRValue};
use rustc_ast::expand::allocator::{AllocatorKind, AllocatorTy, ALLOCATOR_METHODS};
use rustc_middle::bug;
use rustc_middle::ty::TyCtxt;
use rustc_span::symbol::sym;
use crate::GccContext;
pub(crate) unsafe fn codegen(tcx: TyCtxt<'_>, mods: &mut GccContext, kind: AllocatorKind, has_alloc_error_handler: bool) {
let context = &mods.context;
let usize =
match tcx.sess.target.pointer_width {
16 => context.new_type::<u16>(),
32 => context.new_type::<u32>(),
64 => context.new_type::<u64>(),
tws => bug!("Unsupported target word size for int: {}", tws),
};
let i8 = context.new_type::<i8>();
let i8p = i8.make_pointer();
let void = context.new_type::<()>();
for method in ALLOCATOR_METHODS {
let mut types = Vec::with_capacity(method.inputs.len());
for ty in method.inputs.iter() {
match *ty {
AllocatorTy::Layout => {
types.push(usize);
types.push(usize);
}
AllocatorTy::Ptr => types.push(i8p),
AllocatorTy::Usize => types.push(usize),
AllocatorTy::ResultPtr | AllocatorTy::Unit => panic!("invalid allocator arg"),
}
}
let output = match method.output {
AllocatorTy::ResultPtr => Some(i8p),
AllocatorTy::Unit => None,
AllocatorTy::Layout | AllocatorTy::Usize | AllocatorTy::Ptr => {
panic!("invalid allocator output")
}
};
let name = format!("__rust_{}", method.name);
let args: Vec<_> = types.iter().enumerate()
.map(|(index, typ)| context.new_parameter(None, *typ, &format!("param{}", index)))
.collect();
let func = context.new_function(None, FunctionType::Exported, output.unwrap_or(void), &args, name, false);
if tcx.sess.target.options.default_hidden_visibility {
//llvm::LLVMRustSetVisibility(func, llvm::Visibility::Hidden);
}
if tcx.sess.must_emit_unwind_tables() {
// TODO
//attributes::emit_uwtable(func, true);
}
let callee = kind.fn_name(method.name);
let args: Vec<_> = types.iter().enumerate()
.map(|(index, typ)| context.new_parameter(None, *typ, &format!("param{}", index)))
.collect();
let callee = context.new_function(None, FunctionType::Extern, output.unwrap_or(void), &args, callee, false);
//llvm::LLVMRustSetVisibility(callee, llvm::Visibility::Hidden);
let block = func.new_block("entry");
let args = args
.iter()
.enumerate()
.map(|(i, _)| func.get_param(i as i32).to_rvalue())
.collect::<Vec<_>>();
let ret = context.new_call(None, callee, &args);
//llvm::LLVMSetTailCall(ret, True);
if output.is_some() {
block.end_with_return(None, ret);
}
else {
block.end_with_void_return(None);
}
}
let types = [usize, usize];
let name = "__rust_alloc_error_handler".to_string();
let args: Vec<_> = types.iter().enumerate()
.map(|(index, typ)| context.new_parameter(None, *typ, &format!("param{}", index)))
.collect();
let func = context.new_function(None, FunctionType::Exported, void, &args, name, false);
let kind =
if has_alloc_error_handler {
AllocatorKind::Global
}
else {
AllocatorKind::Default
};
let callee = kind.fn_name(sym::oom);
let args: Vec<_> = types.iter().enumerate()
.map(|(index, typ)| context.new_parameter(None, *typ, &format!("param{}", index)))
.collect();
let callee = context.new_function(None, FunctionType::Extern, void, &args, callee, false);
//llvm::LLVMRustSetVisibility(callee, llvm::Visibility::Hidden);
let block = func.new_block("entry");
let args = args
.iter()
.enumerate()
.map(|(i, _)| func.get_param(i as i32).to_rvalue())
.collect::<Vec<_>>();
let _ret = context.new_call(None, callee, &args);
//llvm::LLVMSetTailCall(ret, True);
block.end_with_void_return(None);
}

View File

@@ -0,0 +1,270 @@
use std::fs::File;
use std::path::{Path, PathBuf};
use rustc_session::Session;
use rustc_codegen_ssa::back::archive::{find_library, ArchiveBuilder};
use rustc_codegen_ssa::METADATA_FILENAME;
use rustc_data_structures::temp_dir::MaybeTempDir;
use rustc_middle::middle::cstore::DllImport;
use rustc_span::symbol::Symbol;
struct ArchiveConfig<'a> {
sess: &'a Session,
dst: PathBuf,
lib_search_paths: Vec<PathBuf>,
use_native_ar: bool,
use_gnu_style_archive: bool,
}
#[derive(Debug)]
enum ArchiveEntry {
FromArchive {
archive_index: usize,
entry_index: usize,
},
File(PathBuf),
}
pub struct ArArchiveBuilder<'a> {
config: ArchiveConfig<'a>,
src_archives: Vec<(PathBuf, ar::Archive<File>)>,
// Don't use `HashMap` here, as the order is important. `rust.metadata.bin` must always be at
// the end of an archive for linkers to not get confused.
entries: Vec<(String, ArchiveEntry)>,
}
impl<'a> ArchiveBuilder<'a> for ArArchiveBuilder<'a> {
fn new(sess: &'a Session, output: &Path, input: Option<&Path>) -> Self {
use rustc_codegen_ssa::back::link::archive_search_paths;
let config = ArchiveConfig {
sess,
dst: output.to_path_buf(),
lib_search_paths: archive_search_paths(sess),
use_native_ar: false,
// FIXME test for linux and System V derivatives instead
use_gnu_style_archive: sess.target.options.archive_format == "gnu",
};
let (src_archives, entries) = if let Some(input) = input {
let mut archive = ar::Archive::new(File::open(input).unwrap());
let mut entries = Vec::new();
let mut i = 0;
while let Some(entry) = archive.next_entry() {
let entry = entry.unwrap();
entries.push((
String::from_utf8(entry.header().identifier().to_vec()).unwrap(),
ArchiveEntry::FromArchive {
archive_index: 0,
entry_index: i,
},
));
i += 1;
}
(vec![(input.to_owned(), archive)], entries)
} else {
(vec![], Vec::new())
};
ArArchiveBuilder {
config,
src_archives,
entries,
}
}
fn src_files(&mut self) -> Vec<String> {
self.entries.iter().map(|(name, _)| name.clone()).collect()
}
fn remove_file(&mut self, name: &str) {
let index = self
.entries
.iter()
.position(|(entry_name, _)| entry_name == name)
.expect("Tried to remove file not existing in src archive");
self.entries.remove(index);
}
fn add_file(&mut self, file: &Path) {
self.entries.push((
file.file_name().unwrap().to_str().unwrap().to_string(),
ArchiveEntry::File(file.to_owned()),
));
}
fn add_native_library(&mut self, name: Symbol, verbatim: bool) {
let location = find_library(name, verbatim, &self.config.lib_search_paths, self.config.sess);
self.add_archive(location.clone(), |_| false)
.unwrap_or_else(|e| {
panic!(
"failed to add native library {}: {}",
location.to_string_lossy(),
e
);
});
}
fn add_rlib(
&mut self,
rlib: &Path,
name: &str,
lto: bool,
skip_objects: bool,
) -> std::io::Result<()> {
let obj_start = name.to_owned();
self.add_archive(rlib.to_owned(), move |fname: &str| {
// Ignore metadata files, no matter the name.
if fname == METADATA_FILENAME {
return true;
}
// Don't include Rust objects if LTO is enabled
if lto && fname.starts_with(&obj_start) && fname.ends_with(".o") {
return true;
}
// Otherwise if this is *not* a rust object and we're skipping
// objects then skip this file
if skip_objects && (!fname.starts_with(&obj_start) || !fname.ends_with(".o")) {
return true;
}
// ok, don't skip this
return false;
})
}
fn update_symbols(&mut self) {
}
fn build(mut self) {
use std::process::Command;
fn add_file_using_ar(archive: &Path, file: &Path) {
Command::new("ar")
.arg("r") // add or replace file
.arg("-c") // silence created file message
.arg(archive)
.arg(&file)
.status()
.unwrap();
}
enum BuilderKind<'a> {
Bsd(ar::Builder<File>),
Gnu(ar::GnuBuilder<File>),
NativeAr(&'a Path),
}
let mut builder = if self.config.use_native_ar {
BuilderKind::NativeAr(&self.config.dst)
} else if self.config.use_gnu_style_archive {
BuilderKind::Gnu(ar::GnuBuilder::new(
File::create(&self.config.dst).unwrap(),
self.entries
.iter()
.map(|(name, _)| name.as_bytes().to_vec())
.collect(),
))
} else {
BuilderKind::Bsd(ar::Builder::new(File::create(&self.config.dst).unwrap()))
};
// Add all files
for (entry_name, entry) in self.entries.into_iter() {
match entry {
ArchiveEntry::FromArchive {
archive_index,
entry_index,
} => {
let (ref src_archive_path, ref mut src_archive) =
self.src_archives[archive_index];
let entry = src_archive.jump_to_entry(entry_index).unwrap();
let header = entry.header().clone();
match builder {
BuilderKind::Bsd(ref mut builder) => {
builder.append(&header, entry).unwrap()
}
BuilderKind::Gnu(ref mut builder) => {
builder.append(&header, entry).unwrap()
}
BuilderKind::NativeAr(archive_file) => {
Command::new("ar")
.arg("x")
.arg(src_archive_path)
.arg(&entry_name)
.status()
.unwrap();
add_file_using_ar(archive_file, Path::new(&entry_name));
std::fs::remove_file(entry_name).unwrap();
}
}
}
ArchiveEntry::File(file) =>
match builder {
BuilderKind::Bsd(ref mut builder) => {
builder
.append_file(entry_name.as_bytes(), &mut File::open(file).expect("file for bsd builder"))
.unwrap()
},
BuilderKind::Gnu(ref mut builder) => {
builder
.append_file(entry_name.as_bytes(), &mut File::open(&file).expect(&format!("file {:?} for gnu builder", file)))
.unwrap()
},
BuilderKind::NativeAr(archive_file) => add_file_using_ar(archive_file, &file),
},
}
}
// Finalize archive
std::mem::drop(builder);
// Run ranlib to be able to link the archive
let status = std::process::Command::new("ranlib")
.arg(self.config.dst)
.status()
.expect("Couldn't run ranlib");
if !status.success() {
self.config.sess.fatal(&format!("Ranlib exited with code {:?}", status.code()));
}
}
fn inject_dll_import_lib(&mut self, _lib_name: &str, _dll_imports: &[DllImport], _tmpdir: &MaybeTempDir) {
unimplemented!();
}
}
impl<'a> ArArchiveBuilder<'a> {
fn add_archive<F>(&mut self, archive_path: PathBuf, mut skip: F) -> std::io::Result<()>
where
F: FnMut(&str) -> bool + 'static,
{
let mut archive = ar::Archive::new(std::fs::File::open(&archive_path)?);
let archive_index = self.src_archives.len();
let mut i = 0;
while let Some(entry) = archive.next_entry() {
let entry = entry.unwrap();
let file_name = String::from_utf8(entry.header().identifier().to_vec()).unwrap();
if !skip(&file_name) {
self.entries.push((
file_name,
ArchiveEntry::FromArchive {
archive_index,
entry_index: i,
},
));
}
i += 1;
}
self.src_archives.push((archive_path, archive));
Ok(())
}
}

View File

@@ -0,0 +1,632 @@
use gccjit::{RValue, ToRValue, Type};
use rustc_ast::ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_codegen_ssa::mir::operand::OperandValue;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{AsmBuilderMethods, AsmMethods, BaseTypeMethods, BuilderMethods, GlobalAsmOperandRef, InlineAsmOperandRef};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::LlvmInlineAsmInner;
use rustc_middle::bug;
use rustc_span::Span;
use rustc_target::asm::*;
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'a, 'gcc, 'tcx> AsmBuilderMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
fn codegen_llvm_inline_asm(&mut self, _ia: &LlvmInlineAsmInner, _outputs: Vec<PlaceRef<'tcx, RValue<'gcc>>>, mut _inputs: Vec<RValue<'gcc>>, _span: Span) -> bool {
// TODO
return true;
/*let mut ext_constraints = vec![];
let mut output_types = vec![];
// Prepare the output operands
let mut indirect_outputs = vec![];
for (i, (out, &place)) in ia.outputs.iter().zip(&outputs).enumerate() {
if out.is_rw {
let operand = self.load_operand(place);
if let OperandValue::Immediate(_) = operand.val {
inputs.push(operand.immediate());
}
ext_constraints.push(i.to_string());
}
if out.is_indirect {
let operand = self.load_operand(place);
if let OperandValue::Immediate(_) = operand.val {
indirect_outputs.push(operand.immediate());
}
} else {
output_types.push(place.layout.gcc_type(self.cx()));
}
}
if !indirect_outputs.is_empty() {
indirect_outputs.extend_from_slice(&inputs);
inputs = indirect_outputs;
}
let clobbers = ia.clobbers.iter().map(|s| format!("~{{{}}}", &s));
// Default per-arch clobbers
// Basically what clang does
let arch_clobbers = match &self.sess().target.target.arch[..] {
"x86" | "x86_64" => vec!["~{dirflag}", "~{fpsr}", "~{flags}"],
"mips" | "mips64" => vec!["~{$1}"],
_ => Vec::new(),
};
let all_constraints = ia
.outputs
.iter()
.map(|out| out.constraint.to_string())
.chain(ia.inputs.iter().map(|s| s.to_string()))
.chain(ext_constraints)
.chain(clobbers)
.chain(arch_clobbers.iter().map(|s| (*s).to_string()))
.collect::<Vec<String>>()
.join(",");
debug!("Asm Constraints: {}", &all_constraints);
// Depending on how many outputs we have, the return type is different
let num_outputs = output_types.len();
let output_type = match num_outputs {
0 => self.type_void(),
1 => output_types[0],
_ => self.type_struct(&output_types, false),
};
let asm = ia.asm.as_str();
let r = inline_asm_call(
self,
&asm,
&all_constraints,
&inputs,
output_type,
ia.volatile,
ia.alignstack,
ia.dialect,
);
if r.is_none() {
return false;
}
let r = r.unwrap();
// Again, based on how many outputs we have
let outputs = ia.outputs.iter().zip(&outputs).filter(|&(ref o, _)| !o.is_indirect);
for (i, (_, &place)) in outputs.enumerate() {
let v = if num_outputs == 1 { r } else { self.extract_value(r, i as u64) };
OperandValue::Immediate(v).store(self, place);
}
// Store mark in a metadata node so we can map LLVM errors
// back to source locations. See #17552.
unsafe {
let key = "srcloc";
let kind = llvm::LLVMGetMDKindIDInContext(
self.llcx,
key.as_ptr() as *const c_char,
key.len() as c_uint,
);
let val: &'ll Value = self.const_i32(span.ctxt().outer_expn().as_u32() as i32);
llvm::LLVMSetMetadata(r, kind, llvm::LLVMMDNodeInContext(self.llcx, &val, 1));
}
true*/
}
fn codegen_inline_asm(&mut self, template: &[InlineAsmTemplatePiece], operands: &[InlineAsmOperandRef<'tcx, Self>], options: InlineAsmOptions, _span: &[Span]) {
let asm_arch = self.tcx.sess.asm_arch.unwrap();
let intel_dialect =
match asm_arch {
InlineAsmArch::X86 | InlineAsmArch::X86_64 if !options.contains(InlineAsmOptions::ATT_SYNTAX) => true,
_ => false,
};
// Collect the types of output operands
// FIXME: we do this here instead of later because of a bug in libgccjit where creating the
// variable after the extended asm expression causes a segfault:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100380
let mut output_vars = FxHashMap::default();
let mut operand_numbers = FxHashMap::default();
let mut current_number = 0;
for (idx, op) in operands.iter().enumerate() {
match *op {
InlineAsmOperandRef::Out { place, .. } => {
let ty =
match place {
Some(place) => place.layout.gcc_type(self.cx, false),
None => {
// If the output is discarded, we don't really care what
// type is used. We're just using this to tell GCC to
// reserve the register.
//dummy_output_type(self.cx, reg.reg_class())
// NOTE: if no output value, we should not create one (it will be a
// clobber).
continue;
},
};
let var = self.current_func().new_local(None, ty, "output_register");
operand_numbers.insert(idx, current_number);
current_number += 1;
output_vars.insert(idx, var);
}
InlineAsmOperandRef::InOut { out_place, .. } => {
let ty =
match out_place {
Some(place) => place.layout.gcc_type(self.cx, false),
None => {
// If the output is discarded, we don't really care what
// type is used. We're just using this to tell GCC to
// reserve the register.
//dummy_output_type(self.cx, reg.reg_class())
// NOTE: if no output value, we should not create one.
continue;
},
};
operand_numbers.insert(idx, current_number);
current_number += 1;
let var = self.current_func().new_local(None, ty, "output_register");
output_vars.insert(idx, var);
}
_ => {}
}
}
// All output operands must come before the input operands, hence the 2 loops.
for (idx, op) in operands.iter().enumerate() {
match *op {
InlineAsmOperandRef::In { .. } | InlineAsmOperandRef::InOut { .. } => {
operand_numbers.insert(idx, current_number);
current_number += 1;
},
_ => (),
}
}
// Build the template string
let mut template_str = String::new();
for piece in template {
match *piece {
InlineAsmTemplatePiece::String(ref string) => {
if string.contains('%') {
for c in string.chars() {
if c == '%' {
template_str.push_str("%%");
}
else {
template_str.push(c);
}
}
}
else {
template_str.push_str(string)
}
}
InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _ } => {
match operands[operand_idx] {
InlineAsmOperandRef::Out { reg, place: Some(_), .. } => {
let modifier = modifier_to_gcc(asm_arch, reg.reg_class(), modifier);
if let Some(modifier) = modifier {
template_str.push_str(&format!("%{}{}", modifier, operand_numbers[&operand_idx]));
} else {
template_str.push_str(&format!("%{}", operand_numbers[&operand_idx]));
}
},
InlineAsmOperandRef::Out { place: None, .. } => {
unimplemented!("Out None");
},
InlineAsmOperandRef::In { reg, .. }
| InlineAsmOperandRef::InOut { reg, .. } => {
let modifier = modifier_to_gcc(asm_arch, reg.reg_class(), modifier);
if let Some(modifier) = modifier {
template_str.push_str(&format!("%{}{}", modifier, operand_numbers[&operand_idx]));
} else {
template_str.push_str(&format!("%{}", operand_numbers[&operand_idx]));
}
}
InlineAsmOperandRef::Const { ref string } => {
// Const operands get injected directly into the template
template_str.push_str(string);
}
InlineAsmOperandRef::SymFn { .. }
| InlineAsmOperandRef::SymStatic { .. } => {
unimplemented!();
// Only emit the raw symbol name
//template_str.push_str(&format!("${{{}:c}}", op_idx[&operand_idx]));
}
}
}
}
}
let block = self.llbb();
let template_str =
if intel_dialect {
template_str
}
else {
// FIXME: this might break the "m" memory constraint:
// https://stackoverflow.com/a/9347957/389119
// TODO: only set on x86 platforms.
format!(".att_syntax noprefix\n\t{}\n\t.intel_syntax noprefix", template_str)
};
let extended_asm = block.add_extended_asm(None, &template_str);
// Collect the types of output operands
let mut output_types = vec![];
for (idx, op) in operands.iter().enumerate() {
match *op {
InlineAsmOperandRef::Out { reg, late, place } => {
let ty =
match place {
Some(place) => place.layout.gcc_type(self.cx, false),
None => {
// If the output is discarded, we don't really care what
// type is used. We're just using this to tell GCC to
// reserve the register.
dummy_output_type(self.cx, reg.reg_class())
},
};
output_types.push(ty);
//op_idx.insert(idx, constraints.len());
let prefix = if late { "=" } else { "=&" };
let constraint = format!("{}{}", prefix, reg_to_gcc(reg));
if place.is_some() {
let var = output_vars[&idx];
extended_asm.add_output_operand(None, &constraint, var);
}
else {
// NOTE: reg.to_string() returns the register name with quotes around it so
// remove them.
extended_asm.add_clobber(reg.to_string().trim_matches('"'));
}
}
InlineAsmOperandRef::InOut { reg, late, in_value, out_place } => {
let ty =
match out_place {
Some(out_place) => out_place.layout.gcc_type(self.cx, false),
None => dummy_output_type(self.cx, reg.reg_class())
};
output_types.push(ty);
//op_idx.insert(idx, constraints.len());
// TODO: prefix of "+" for reading and writing?
let prefix = if late { "=" } else { "=&" };
let constraint = format!("{}{}", prefix, reg_to_gcc(reg));
if out_place.is_some() {
let var = output_vars[&idx];
// TODO: also specify an output operand when out_place is none: that would
// be the clobber but clobbers do not support general constraint like reg;
// they only support named registers.
// Not sure how we can do this. And the LLVM backend does not seem to add a
// clobber.
extended_asm.add_output_operand(None, &constraint, var);
}
let constraint = reg_to_gcc(reg);
extended_asm.add_input_operand(None, &constraint, in_value.immediate());
}
InlineAsmOperandRef::In { reg, value } => {
let constraint = reg_to_gcc(reg);
extended_asm.add_input_operand(None, &constraint, value.immediate());
}
_ => {}
}
}
/*if !options.contains(InlineAsmOptions::PRESERVES_FLAGS) {
match asm_arch {
InlineAsmArch::AArch64 | InlineAsmArch::Arm => {
constraints.push("~{cc}".to_string());
}
InlineAsmArch::X86 | InlineAsmArch::X86_64 => {
constraints.extend_from_slice(&[
"~{dirflag}".to_string(),
"~{fpsr}".to_string(),
"~{flags}".to_string(),
]);
}
InlineAsmArch::RiscV32 | InlineAsmArch::RiscV64 => {}
}
}
if !options.contains(InlineAsmOptions::NOMEM) {
// This is actually ignored by LLVM, but it's probably best to keep
// it just in case. LLVM instead uses the ReadOnly/ReadNone
// attributes on the call instruction to optimize.
constraints.push("~{memory}".to_string());
}
let volatile = !options.contains(InlineAsmOptions::PURE);
let alignstack = !options.contains(InlineAsmOptions::NOSTACK);
let output_type = match &output_types[..] {
[] => self.type_void(),
[ty] => ty,
tys => self.type_struct(&tys, false),
};*/
/*let result = inline_asm_call(
self,
&template_str,
&constraints.join(","),
&inputs,
output_type,
volatile,
alignstack,
dialect,
span,
)
.unwrap_or_else(|| span_bug!(span, "LLVM asm constraint validation failed"));
if options.contains(InlineAsmOptions::PURE) {
if options.contains(InlineAsmOptions::NOMEM) {
llvm::Attribute::ReadNone.apply_callsite(llvm::AttributePlace::Function, result);
} else if options.contains(InlineAsmOptions::READONLY) {
llvm::Attribute::ReadOnly.apply_callsite(llvm::AttributePlace::Function, result);
}
} else {
if options.contains(InlineAsmOptions::NOMEM) {
llvm::Attribute::InaccessibleMemOnly
.apply_callsite(llvm::AttributePlace::Function, result);
} else {
// LLVM doesn't have an attribute to represent ReadOnly + SideEffect
}
}*/
// Write results to outputs
for (idx, op) in operands.iter().enumerate() {
if let InlineAsmOperandRef::Out { place: Some(place), .. }
| InlineAsmOperandRef::InOut { out_place: Some(place), .. } = *op
{
OperandValue::Immediate(output_vars[&idx].to_rvalue()).store(self, place);
}
}
}
}
/// Converts a register class to a GCC constraint code.
// TODO: return &'static str instead?
fn reg_to_gcc(reg: InlineAsmRegOrRegClass) -> String {
match reg {
// For vector registers LLVM wants the register name to match the type size.
InlineAsmRegOrRegClass::Reg(reg) => {
// TODO: add support for vector register.
let constraint =
match reg.name() {
"ax" => "a",
"bx" => "b",
"cx" => "c",
"dx" => "d",
"si" => "S",
"di" => "D",
// TODO: for registers like r11, we have to create a register variable: https://stackoverflow.com/a/31774784/389119
// TODO: in this case though, it's a clobber, so it should work as r11.
// Recent nightly supports clobber() syntax, so update to it. It does not seem
// like it's implemented yet.
name => name, // FIXME: probably wrong.
};
constraint.to_string()
},
InlineAsmRegOrRegClass::RegClass(reg) => match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => unimplemented!(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg) => unimplemented!(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg) => unimplemented!(),
InlineAsmRegClass::Bpf(_) => unimplemented!(),
InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => unimplemented!(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => unimplemented!(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => unimplemented!(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => unimplemented!(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => unimplemented!(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => unimplemented!(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => unimplemented!(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => unimplemented!(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::mmx_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg) => "r",
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::x87_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => unimplemented!(),
InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => unimplemented!(),
InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
bug!("GCC backend does not support SPIR-V")
}
InlineAsmRegClass::Err => unreachable!(),
}
.to_string(),
}
}
/// Type to use for outputs that are discarded. It doesn't really matter what
/// the type is, as long as it is valid for the constraint code.
fn dummy_output_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, reg: InlineAsmRegClass) -> Type<'gcc> {
match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => unimplemented!(),
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
| InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
unimplemented!()
}
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => cx.type_i32(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => cx.type_f32(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => cx.type_f64(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
unimplemented!()
}
InlineAsmRegClass::Bpf(_) => unimplemented!(),
InlineAsmRegClass::Hexagon(HexagonInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::Mips(MipsInlineAsmRegClass::freg) => cx.type_f32(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg16) => cx.type_i16(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg32) => cx.type_i32(),
InlineAsmRegClass::Nvptx(NvptxInlineAsmRegClass::reg64) => cx.type_i64(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::reg_nonzero) => cx.type_i32(),
InlineAsmRegClass::PowerPC(PowerPCInlineAsmRegClass::freg) => cx.type_f64(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg) => cx.type_i32(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => cx.type_f32(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => cx.type_f32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => cx.type_i32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => cx.type_i8(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::mmx_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => cx.type_f32(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::x87_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => cx.type_i16(),
InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => cx.type_i32(),
InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
bug!("LLVM backend does not support SPIR-V")
},
InlineAsmRegClass::Err => unreachable!(),
}
}
impl<'gcc, 'tcx> AsmMethods for CodegenCx<'gcc, 'tcx> {
fn codegen_global_asm(&self, template: &[InlineAsmTemplatePiece], operands: &[GlobalAsmOperandRef], options: InlineAsmOptions, _line_spans: &[Span]) {
let asm_arch = self.tcx.sess.asm_arch.unwrap();
// Default to Intel syntax on x86
let intel_syntax = matches!(asm_arch, InlineAsmArch::X86 | InlineAsmArch::X86_64)
&& !options.contains(InlineAsmOptions::ATT_SYNTAX);
// Build the template string
let mut template_str = String::new();
for piece in template {
match *piece {
InlineAsmTemplatePiece::String(ref string) => {
for line in string.lines() {
// NOTE: gcc does not allow inline comment, so remove them.
let line =
if let Some(index) = line.rfind("//") {
&line[..index]
}
else {
line
};
template_str.push_str(line);
template_str.push('\n');
}
},
InlineAsmTemplatePiece::Placeholder { operand_idx, modifier: _, span: _ } => {
match operands[operand_idx] {
GlobalAsmOperandRef::Const { ref string } => {
// Const operands get injected directly into the
// template. Note that we don't need to escape $
// here unlike normal inline assembly.
template_str.push_str(string);
}
}
}
}
}
let template_str =
if intel_syntax {
format!("{}\n\t.intel_syntax noprefix", template_str)
}
else {
format!(".att_syntax\n\t{}\n\t.intel_syntax noprefix", template_str)
};
// NOTE: seems like gcc will put the asm in the wrong section, so set it to .text manually.
let template_str = format!(".pushsection .text\n{}\n.popsection", template_str);
self.context.add_top_level_asm(None, &template_str);
}
}
fn modifier_to_gcc(arch: InlineAsmArch, reg: InlineAsmRegClass, modifier: Option<char>) -> Option<char> {
match reg {
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::reg) => modifier,
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::preg) => modifier,
InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg)
| InlineAsmRegClass::AArch64(AArch64InlineAsmRegClass::vreg_low16) => {
unimplemented!()
//if modifier == Some('v') { None } else { modifier }
}
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::reg_thumb) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::sreg_low16) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low16)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::dreg_low8) => unimplemented!(),
InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low8)
| InlineAsmRegClass::Arm(ArmInlineAsmRegClass::qreg_low4) => {
unimplemented!()
/*if modifier.is_none() {
Some('q')
} else {
modifier
}*/
}
InlineAsmRegClass::Bpf(_) => unimplemented!(),
InlineAsmRegClass::Hexagon(_) => unimplemented!(),
InlineAsmRegClass::Mips(_) => unimplemented!(),
InlineAsmRegClass::Nvptx(_) => unimplemented!(),
InlineAsmRegClass::PowerPC(_) => unimplemented!(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::reg)
| InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::freg) => unimplemented!(),
InlineAsmRegClass::RiscV(RiscVInlineAsmRegClass::vreg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_abcd) => match modifier {
None if arch == InlineAsmArch::X86_64 => Some('q'),
None => Some('k'),
Some('l') => Some('b'),
Some('h') => Some('h'),
Some('x') => Some('w'),
Some('e') => Some('k'),
Some('r') => Some('q'),
_ => unreachable!(),
},
InlineAsmRegClass::X86(X86InlineAsmRegClass::mmx_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::reg_byte) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::xmm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::ymm_reg)
| InlineAsmRegClass::X86(X86InlineAsmRegClass::zmm_reg) => unimplemented!() /*match (reg, modifier) {
(X86InlineAsmRegClass::xmm_reg, None) => Some('x'),
(X86InlineAsmRegClass::ymm_reg, None) => Some('t'),
(X86InlineAsmRegClass::zmm_reg, None) => Some('g'),
(_, Some('x')) => Some('x'),
(_, Some('y')) => Some('t'),
(_, Some('z')) => Some('g'),
_ => unreachable!(),
}*/,
InlineAsmRegClass::X86(X86InlineAsmRegClass::x87_reg) => unimplemented!(),
InlineAsmRegClass::X86(X86InlineAsmRegClass::kreg) => unimplemented!(),
InlineAsmRegClass::Wasm(WasmInlineAsmRegClass::local) => unimplemented!(),
InlineAsmRegClass::SpirV(SpirVInlineAsmRegClass::reg) => {
bug!("LLVM backend does not support SPIR-V")
},
InlineAsmRegClass::Err => unreachable!(),
}
}

View File

@@ -0,0 +1 @@
pub mod write;

View File

@@ -0,0 +1,234 @@
use std::fs;
use gccjit::OutputKind;
use rustc_codegen_ssa::{CompiledModule, ModuleCodegen};
use rustc_codegen_ssa::back::write::{CodegenContext, EmitObj, ModuleConfig};
use rustc_errors::Handler;
use rustc_session::config::OutputType;
use rustc_span::fatal_error::FatalError;
use rustc_target::spec::SplitDebuginfo;
use crate::{GccCodegenBackend, GccContext};
pub(crate) unsafe fn codegen(cgcx: &CodegenContext<GccCodegenBackend>, _diag_handler: &Handler, module: ModuleCodegen<GccContext>, config: &ModuleConfig) -> Result<CompiledModule, FatalError> {
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &module.name[..]);
{
let context = &module.module_llvm.context;
//let llcx = &*module.module_llvm.llcx;
//let tm = &*module.module_llvm.tm;
let module_name = module.name.clone();
let module_name = Some(&module_name[..]);
//let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
/*if cgcx.msvc_imps_needed {
create_msvc_imps(cgcx, llcx, llmod);
}*/
// A codegen-specific pass manager is used to generate object
// files for an GCC module.
//
// Apparently each of these pass managers is a one-shot kind of
// thing, so we create a new one for each type of output. The
// pass manager passed to the closure should be ensured to not
// escape the closure itself, and the manager should only be
// used once.
/*unsafe fn with_codegen<'ll, F, R>(tm: &'ll llvm::TargetMachine, llmod: &'ll llvm::Module, no_builtins: bool, f: F) -> R
where F: FnOnce(&'ll mut PassManager<'ll>) -> R,
{
let cpm = llvm::LLVMCreatePassManager();
llvm::LLVMAddAnalysisPasses(tm, cpm);
llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
f(cpm)
}*/
// Two things to note:
// - If object files are just LLVM bitcode we write bitcode, copy it to
// the .o file, and delete the bitcode if it wasn't otherwise
// requested.
// - If we don't have the integrated assembler then we need to emit
// asm from LLVM and use `gcc` to create the object file.
let _bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);
if config.bitcode_needed() {
// TODO
/*let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_make_bitcode", &module.name[..]);
let thin = ThinBuffer::new(llmod);
let data = thin.data();
if config.emit_bc || config.emit_obj == EmitObj::Bitcode {
let _timer = cgcx.prof.generic_activity_with_arg(
"LLVM_module_codegen_emit_bitcode",
&module.name[..],
);
if let Err(e) = fs::write(&bc_out, data) {
let msg = format!("failed to write bytecode to {}: {}", bc_out.display(), e);
diag_handler.err(&msg);
}
}
if config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full) {
let _timer = cgcx.prof.generic_activity_with_arg(
"LLVM_module_codegen_embed_bitcode",
&module.name[..],
);
embed_bitcode(cgcx, llcx, llmod, Some(data));
}
if config.emit_bc_compressed {
let _timer = cgcx.prof.generic_activity_with_arg(
"LLVM_module_codegen_emit_compressed_bitcode",
&module.name[..],
);
let dst = bc_out.with_extension(RLIB_BYTECODE_EXTENSION);
let data = bytecode::encode(&module.name, data);
if let Err(e) = fs::write(&dst, data) {
let msg = format!("failed to write bytecode to {}: {}", dst.display(), e);
diag_handler.err(&msg);
}
}*/
} /*else if config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Marker) {
unimplemented!();
//embed_bitcode(cgcx, llcx, llmod, None);
}*/
if config.emit_ir {
unimplemented!();
/*let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_ir", &module.name[..]);
let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
let out_c = path_to_c_string(&out);
extern "C" fn demangle_callback(
input_ptr: *const c_char,
input_len: size_t,
output_ptr: *mut c_char,
output_len: size_t,
) -> size_t {
let input =
unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) };
let input = match str::from_utf8(input) {
Ok(s) => s,
Err(_) => return 0,
};
let output = unsafe {
slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
};
let mut cursor = io::Cursor::new(output);
let demangled = match rustc_demangle::try_demangle(input) {
Ok(d) => d,
Err(_) => return 0,
};
if write!(cursor, "{:#}", demangled).is_err() {
// Possible only if provided buffer is not big enough
return 0;
}
cursor.position() as size_t
}
let result = llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback);
result.into_result().map_err(|()| {
let msg = format!("failed to write LLVM IR to {}", out.display());
llvm_err(diag_handler, &msg)
})?;*/
}
if config.emit_asm {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_asm", &module.name[..]);
let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
context.compile_to_file(OutputKind::Assembler, path.to_str().expect("path to str"));
/*with_codegen(tm, llmod, config.no_builtins, |cpm| {
write_output_file(diag_handler, tm, cpm, llmod, &path, llvm::FileType::AssemblyFile)
})?;*/
}
match config.emit_obj {
EmitObj::ObjectCode(_) => {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_obj", &module.name[..]);
//with_codegen(tm, llmod, config.no_builtins, |cpm| {
//println!("1: {}", module.name);
match &*module.name {
"std_example.7rcbfp3g-cgu.15" => {
println!("Dumping reproducer {}", module.name);
let _ = fs::create_dir("/tmp/reproducers");
// FIXME: segfault in dump_reproducer_to_file() might be caused by
// transmuting an rvalue to an lvalue.
// Segfault is actually in gcc::jit::reproducer::get_identifier_as_lvalue
context.dump_reproducer_to_file(&format!("/tmp/reproducers/{}.c", module.name));
println!("Dumped reproducer {}", module.name);
},
_ => (),
}
/*let _ = fs::create_dir("/tmp/dumps");
context.dump_to_file(&format!("/tmp/dumps/{}.c", module.name), true);
println!("Dumped {}", module.name);*/
//println!("Compile module {}", module.name);
context.compile_to_file(OutputKind::ObjectFile, obj_out.to_str().expect("path to str"));
//})?;
}
EmitObj::Bitcode => {
//unimplemented!();
/*debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
if let Err(e) = link_or_copy(&bc_out, &obj_out) {
diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
}
if !config.emit_bc {
debug!("removing_bitcode {:?}", bc_out);
if let Err(e) = fs::remove_file(&bc_out) {
diag_handler.err(&format!("failed to remove bitcode: {}", e));
}
}*/
}
EmitObj::None => {}
}
//drop(handlers);
}
Ok(module.into_compiled_module(
config.emit_obj != EmitObj::None,
cgcx.target_can_use_split_dwarf && cgcx.split_debuginfo == SplitDebuginfo::Unpacked,
config.emit_bc,
&cgcx.output_filenames,
))
}
pub(crate) fn link(_cgcx: &CodegenContext<GccCodegenBackend>, _diag_handler: &Handler, mut _modules: Vec<ModuleCodegen<GccContext>>) -> Result<ModuleCodegen<GccContext>, FatalError> {
unimplemented!();
/*use super::lto::{Linker, ModuleBuffer};
// Sort the modules by name to ensure to ensure deterministic behavior.
modules.sort_by(|a, b| a.name.cmp(&b.name));
let (first, elements) =
modules.split_first().expect("Bug! modules must contain at least one module.");
let mut linker = Linker::new(first.module_llvm.llmod());
for module in elements {
let _timer =
cgcx.prof.generic_activity_with_arg("LLVM_link_module", format!("{:?}", module.name));
let buffer = ModuleBuffer::new(module.module_llvm.llmod());
linker.add(&buffer.data()).map_err(|()| {
let msg = format!("failed to serialize module {:?}", module.name);
llvm_err(&diag_handler, &msg)
})?;
}
drop(linker);
Ok(modules.remove(0))*/
}

View File

@@ -0,0 +1,173 @@
use std::env;
use std::sync::Once;
use std::time::Instant;
use gccjit::{
Context,
FunctionType,
GlobalKind,
};
use rustc_hir::def_id::LOCAL_CRATE;
use rustc_middle::dep_graph;
use rustc_middle::middle::cstore::EncodedMetadata;
use rustc_middle::middle::exported_symbols;
use rustc_middle::ty::TyCtxt;
use rustc_middle::mir::mono::Linkage;
use rustc_codegen_ssa::{ModuleCodegen, ModuleKind};
use rustc_codegen_ssa::base::maybe_create_entry_wrapper;
use rustc_codegen_ssa::mono_item::MonoItemExt;
use rustc_codegen_ssa::traits::DebugInfoMethods;
use rustc_session::config::DebugInfo;
use rustc_span::Symbol;
use crate::{GccContext, create_function_calling_initializers};
use crate::builder::Builder;
use crate::context::CodegenCx;
pub fn global_linkage_to_gcc(linkage: Linkage) -> GlobalKind {
match linkage {
Linkage::External => GlobalKind::Imported,
Linkage::AvailableExternally => GlobalKind::Imported,
Linkage::LinkOnceAny => unimplemented!(),
Linkage::LinkOnceODR => unimplemented!(),
Linkage::WeakAny => unimplemented!(),
Linkage::WeakODR => unimplemented!(),
Linkage::Appending => unimplemented!(),
Linkage::Internal => GlobalKind::Internal,
Linkage::Private => GlobalKind::Internal,
Linkage::ExternalWeak => GlobalKind::Imported, // TODO: should be weak linkage.
Linkage::Common => unimplemented!(),
}
}
pub fn linkage_to_gcc(linkage: Linkage) -> FunctionType {
match linkage {
Linkage::External => FunctionType::Exported,
Linkage::AvailableExternally => FunctionType::Extern,
Linkage::LinkOnceAny => unimplemented!(),
Linkage::LinkOnceODR => unimplemented!(),
Linkage::WeakAny => FunctionType::Exported, // FIXME: should be similar to linkonce.
Linkage::WeakODR => unimplemented!(),
Linkage::Appending => unimplemented!(),
Linkage::Internal => FunctionType::Internal,
Linkage::Private => FunctionType::Internal,
Linkage::ExternalWeak => unimplemented!(),
Linkage::Common => unimplemented!(),
}
}
pub fn compile_codegen_unit<'tcx>(tcx: TyCtxt<'tcx>, cgu_name: Symbol) -> (ModuleCodegen<GccContext>, u64) {
let prof_timer = tcx.prof.generic_activity("codegen_module");
let start_time = Instant::now();
let dep_node = tcx.codegen_unit(cgu_name).codegen_dep_node(tcx);
let (module, _) = tcx.dep_graph.with_task(dep_node, tcx, cgu_name, module_codegen, dep_graph::hash_result);
let time_to_codegen = start_time.elapsed();
drop(prof_timer);
// We assume that the cost to run GCC on a CGU is proportional to
// the time we needed for codegenning it.
let cost = time_to_codegen.as_secs() * 1_000_000_000 + time_to_codegen.subsec_nanos() as u64;
fn module_codegen(tcx: TyCtxt<'_>, cgu_name: Symbol) -> ModuleCodegen<GccContext> {
let cgu = tcx.codegen_unit(cgu_name);
// Instantiate monomorphizations without filling out definitions yet...
//let llvm_module = ModuleLlvm::new(tcx, &cgu_name.as_str());
let context = Context::default();
// TODO: only set on x86 platforms.
context.add_command_line_option("-masm=intel");
for arg in &tcx.sess.opts.cg.llvm_args {
context.add_command_line_option(arg);
}
context.add_command_line_option("-fno-semantic-interposition");
//context.set_dump_code_on_compile(true);
if env::var("CG_GCCJIT_DUMP_GIMPLE").as_deref() == Ok("1") {
context.set_dump_initial_gimple(true);
}
context.set_debug_info(true);
//context.set_dump_everything(true);
//context.set_keep_intermediates(true);
{
let cx = CodegenCx::new(&context, cgu, tcx);
static START: Once = Once::new();
START.call_once(|| {
let initializer_name = format!("__gccGlobalCrateInit{}", tcx.crate_name(LOCAL_CRATE));
let func = context.new_function(None, FunctionType::Exported, context.new_type::<()>(), &[], initializer_name, false);
let block = func.new_block("initial");
create_function_calling_initializers(tcx, &context, block);
block.end_with_void_return(None);
});
//println!("module_codegen: {:?} {:?}", cgu_name, &cx.context as *const _);
let mono_items = cgu.items_in_deterministic_order(tcx);
for &(mono_item, (linkage, visibility)) in &mono_items {
mono_item.predefine::<Builder<'_, '_, '_>>(&cx, linkage, visibility);
}
// ... and now that we have everything pre-defined, fill out those definitions.
for &(mono_item, _) in &mono_items {
mono_item.define::<Builder<'_, '_, '_>>(&cx);
}
// If this codegen unit contains the main function, also create the
// wrapper here
maybe_create_entry_wrapper::<Builder<'_, '_, '_>>(&cx);
// Finalize debuginfo
if cx.sess().opts.debuginfo != DebugInfo::None {
cx.debuginfo_finalize();
}
cx.global_init_block.end_with_void_return(None);
}
ModuleCodegen {
name: cgu_name.to_string(),
module_llvm: GccContext {
context
},
kind: ModuleKind::Regular,
}
}
(module, cost)
}
pub fn write_compressed_metadata<'tcx>(tcx: TyCtxt<'tcx>, metadata: &EncodedMetadata, gcc_module: &mut GccContext) {
use snap::write::FrameEncoder;
use std::io::Write;
// Historical note:
//
// When using link.exe it was seen that the section name `.note.rustc`
// was getting shortened to `.note.ru`, and according to the PE and COFF
// specification:
//
// > Executable images do not use a string table and do not support
// > section names longer than 8 characters
//
// https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
//
// As a result, we choose a slightly shorter name! As to why
// `.note.rustc` works on MinGW, see
// https://github.com/llvm/llvm-project/blob/llvmorg-12.0.0/lld/COFF/Writer.cpp#L1190-L1197
let section_name = if tcx.sess.target.is_like_osx { "__DATA,.rustc" } else { ".rustc" };
let context = &gcc_module.context;
let mut compressed = rustc_metadata::METADATA_HEADER.to_vec();
FrameEncoder::new(&mut compressed).write_all(&metadata.raw_data).unwrap();
let name = exported_symbols::metadata_symbol_name(tcx);
let typ = context.new_array_type(None, context.new_type::<u8>(), compressed.len() as i32);
let global = context.new_global(None, GlobalKind::Exported, typ, name);
global.global_set_initializer(&compressed);
global.set_link_section(section_name);
// Also generate a .section directive to force no
// flags, at least for ELF outputs, so that the
// metadata doesn't get loaded into memory.
let directive = format!(".section {}", section_name);
context.add_top_level_asm(None, &directive);
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,99 @@
use gccjit::{FunctionType, RValue};
use rustc_codegen_ssa::traits::BaseTypeMethods;
use rustc_middle::ty::{Instance, TypeFoldable};
use rustc_middle::ty::layout::{FnAbiExt, HasTyCtxt};
use rustc_target::abi::call::FnAbi;
use crate::abi::FnAbiGccExt;
use crate::context::CodegenCx;
/// Codegens a reference to a fn/method item, monomorphizing and
/// inlining as it goes.
///
/// # Parameters
///
/// - `cx`: the crate context
/// - `instance`: the instance to be instantiated
pub fn get_fn<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, instance: Instance<'tcx>) -> RValue<'gcc> {
let tcx = cx.tcx();
//debug!("get_fn(instance={:?})", instance);
assert!(!instance.substs.needs_infer());
assert!(!instance.substs.has_escaping_bound_vars());
assert!(!instance.substs.has_param_types_or_consts());
if let Some(&func) = cx.instances.borrow().get(&instance) {
return func;
}
let sym = tcx.symbol_name(instance).name;
//debug!("get_fn({:?}: {:?}) => {}", instance, instance.monomorphic_ty(cx.tcx()), sym);
let fn_abi = FnAbi::of_instance(cx, instance, &[]);
// TODO
let func =
if let Some(func) = cx.get_declared_value(&sym) {
// Create a fn pointer with the new signature.
let ptrty = fn_abi.ptr_to_gcc_type(cx);
// This is subtle and surprising, but sometimes we have to bitcast
// the resulting fn pointer. The reason has to do with external
// functions. If you have two crates that both bind the same C
// library, they may not use precisely the same types: for
// example, they will probably each declare their own structs,
// which are distinct types from LLVM's point of view (nominal
// types).
//
// Now, if those two crates are linked into an application, and
// they contain inlined code, you can wind up with a situation
// where both of those functions wind up being loaded into this
// application simultaneously. In that case, the same function
// (from LLVM's point of view) requires two types. But of course
// LLVM won't allow one function to have two types.
//
// What we currently do, therefore, is declare the function with
// one of the two types (whichever happens to come first) and then
// bitcast as needed when the function is referenced to make sure
// it has the type we expect.
//
// This can occur on either a crate-local or crate-external
// reference. It also occurs when testing libcore and in some
// other weird situations. Annoying.
if cx.val_ty(func) != ptrty {
//debug!("get_fn: casting {:?} to {:?}", func, ptrty);
// TODO
//cx.const_ptrcast(func, ptrty)
func
}
else {
//debug!("get_fn: not casting pointer!");
func
}
}
else {
cx.linkage.set(FunctionType::Extern);
let func = cx.declare_fn(&sym, &fn_abi);
//cx.linkage.set(FunctionType::Internal);
//debug!("get_fn: not casting pointer!");
// TODO
//attributes::from_fn_attrs(cx, func, instance);
//let instance_def_id = instance.def_id();
// TODO
/*if cx.use_dll_storage_attrs && tcx.is_dllimport_foreign_item(instance_def_id) {
unsafe {
llvm::LLVMSetDLLStorageClass(func, llvm::DLLStorageClass::DllImport);
}
}*/
func
};
cx.instances.borrow_mut().insert(instance, func);
func
}

View File

@@ -0,0 +1,448 @@
use std::convert::TryFrom;
use std::convert::TryInto;
use gccjit::{Block, CType, RValue, Type, ToRValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
BaseTypeMethods,
ConstMethods,
DerivedTypeMethods,
MiscMethods,
StaticMethods,
};
use rustc_middle::bug;
use rustc_middle::mir::Mutability;
use rustc_middle::ty::{layout::TyAndLayout, ScalarInt};
use rustc_mir::interpret::{Allocation, GlobalAlloc, Scalar};
use rustc_span::Symbol;
use rustc_target::abi::{self, HasDataLayout, LayoutOf, Pointer, Size};
use crate::consts::const_alloc_to_gcc;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_bytes(&self, bytes: &[u8]) -> RValue<'gcc> {
bytes_in_context(self, bytes)
}
fn const_cstr(&self, symbol: Symbol, _null_terminated: bool) -> RValue<'gcc> {
// TODO: handle null_terminated.
if let Some(&value) = self.const_cstr_cache.borrow().get(&symbol) {
return value.to_rvalue();
}
let global = self.global_string(&*symbol.as_str());
self.const_cstr_cache.borrow_mut().insert(symbol, global.dereference(None));
global
}
fn global_string(&self, string: &str) -> RValue<'gcc> {
// TODO: handle non-null-terminated strings.
let string = self.context.new_string_literal(&*string);
let sym = self.generate_local_symbol_name("str");
// NOTE: TLS is always off for a string litteral.
// NOTE: string litterals do not have a link section.
let global = self.define_global(&sym, self.val_ty(string), false, None)
.unwrap_or_else(|| bug!("symbol `{}` is already defined", sym));
self.global_init_block.add_assignment(None, global.dereference(None), string);
global.to_rvalue()
//llvm::LLVMRustSetLinkage(global, llvm::Linkage::InternalLinkage);
}
pub fn inttoptr(&self, block: Block<'gcc>, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let func = block.get_function();
let local = func.new_local(None, value.get_type(), "intLocal");
block.add_assignment(None, local, value);
let value_address = local.get_address(None);
let ptr = self.context.new_cast(None, value_address, dest_ty.make_pointer());
ptr.dereference(None).to_rvalue()
}
pub fn ptrtoint(&self, block: Block<'gcc>, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
// TODO: when libgccjit allow casting from pointer to int, remove this.
let func = block.get_function();
let local = func.new_local(None, value.get_type(), "ptrLocal");
block.add_assignment(None, local, value);
let ptr_address = local.get_address(None);
let ptr = self.context.new_cast(None, ptr_address, dest_ty.make_pointer());
ptr.dereference(None).to_rvalue()
}
/*pub fn const_vector(&self, elements: &[RValue<'gcc>]) -> RValue<'gcc> {
self.context.new_rvalue_from_vector(None, elements[0].get_type(), elements)
}*/
}
pub fn bytes_in_context<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, bytes: &[u8]) -> RValue<'gcc> {
let context = &cx.context;
let typ = context.new_array_type(None, context.new_type::<u8>(), bytes.len() as i32);
let global = cx.declare_unnamed_global(typ);
global.global_set_initializer(bytes);
global.to_rvalue()
}
pub fn type_is_pointer<'gcc>(typ: Type<'gcc>) -> bool {
typ.get_pointee().is_some()
}
impl<'gcc, 'tcx> ConstMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn const_null(&self, typ: Type<'gcc>) -> RValue<'gcc> {
if type_is_pointer(typ) {
self.context.new_null(typ)
}
else {
self.const_int(typ, 0)
}
}
fn const_undef(&self, typ: Type<'gcc>) -> RValue<'gcc> {
let local = self.current_func.borrow().expect("func")
.new_local(None, typ, "undefined");
if typ.is_struct().is_some() {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
let pointer = local.get_address(None);
self.structs_as_pointer.borrow_mut().insert(pointer);
pointer
}
else {
local.to_rvalue()
}
}
fn const_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> {
self.context.new_rvalue_from_long(typ, i64::try_from(int).expect("i64::try_from"))
}
fn const_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> {
self.context.new_rvalue_from_long(typ, u64::try_from(int).expect("u64::try_from") as i64)
}
fn const_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> {
let num64: Result<i64, _> = num.try_into();
if let Ok(num) = num64 {
// FIXME: workaround for a bug where libgccjit is expecting a constant.
// The operations >> 64 and | low are making the normal case a non-constant.
return self.context.new_rvalue_from_long(typ, num as i64);
}
if num >> 64 != 0 {
// FIXME: use a new function new_rvalue_from_unsigned_long()?
let low = self.context.new_rvalue_from_long(self.u64_type, num as u64 as i64);
let high = self.context.new_rvalue_from_long(typ, (num >> 64) as u64 as i64);
let sixty_four = self.context.new_rvalue_from_long(typ, 64);
(high << sixty_four) | self.context.new_cast(None, low, typ)
}
else if typ.is_i128(self) {
let num = self.context.new_rvalue_from_long(self.u64_type, num as u64 as i64);
self.context.new_cast(None, num, typ)
}
else {
self.context.new_rvalue_from_long(typ, num as u64 as i64)
}
}
fn const_bool(&self, val: bool) -> RValue<'gcc> {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i32(&self, i: i32) -> RValue<'gcc> {
self.const_int(self.type_i32(), i as i64)
}
fn const_u32(&self, i: u32) -> RValue<'gcc> {
self.const_uint(self.type_u32(), i as u64)
}
fn const_u64(&self, i: u64) -> RValue<'gcc> {
self.const_uint(self.type_u64(), i)
}
fn const_usize(&self, i: u64) -> RValue<'gcc> {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.usize_type, i)
}
fn const_u8(&self, _i: u8) -> RValue<'gcc> {
unimplemented!();
//self.const_uint(self.type_i8(), i as u64)
}
fn const_real(&self, _t: Type<'gcc>, _val: f64) -> RValue<'gcc> {
unimplemented!();
//unsafe { llvm::LLVMConstReal(t, val) }
}
fn const_str(&self, s: Symbol) -> (RValue<'gcc>, RValue<'gcc>) {
let len = s.as_str().len();
let cs = self.const_ptrcast(self.const_cstr(s, false),
self.type_ptr_to(self.layout_of(self.tcx.types.str_).gcc_type(self, true)),
);
(cs, self.const_usize(len as u64))
}
fn const_struct(&self, values: &[RValue<'gcc>], packed: bool) -> RValue<'gcc> {
let fields: Vec<_> = values.iter()
.map(|value| value.get_type())
.collect();
// TODO: cache the type? It's anonymous, so probably not.
let name = fields.iter().map(|typ| format!("{:?}", typ)).collect::<Vec<_>>().join("_");
let typ = self.type_struct(&fields, packed);
let structure = self.global_init_func.new_local(None, typ, &name);
let struct_type = typ.is_struct().expect("struct type");
for (index, value) in values.iter().enumerate() {
let field = struct_type.get_field(index as i32);
let field_lvalue = structure.access_field(None, field);
self.global_init_block.add_assignment(None, field_lvalue, *value);
}
self.lvalue_to_rvalue(structure)
}
fn const_to_opt_uint(&self, _v: RValue<'gcc>) -> Option<u64> {
// TODO
None
//try_as_const_integral(v).map(|v| unsafe { llvm::LLVMConstIntGetZExtValue(v) })
}
fn const_to_opt_u128(&self, _v: RValue<'gcc>, _sign_ext: bool) -> Option<u128> {
// TODO
None
/*try_as_const_integral(v).and_then(|v| unsafe {
let (mut lo, mut hi) = (0u64, 0u64);
let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo);
success.then_some(hi_lo_to_u128(lo, hi))
})*/
}
fn scalar_to_backend(&self, cv: Scalar, layout: &abi::Scalar, ty: Type<'gcc>) -> RValue<'gcc> {
let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() };
match cv {
Scalar::Int(ScalarInt::ZST) => {
assert_eq!(0, layout.value.size(self).bytes());
self.const_undef(self.type_ix(0))
}
Scalar::Int(int) => {
let data = int.assert_bits(layout.value.size(self));
// FIXME: there's some issues with using the u128 code that follows, so hard-code
// the paths for floating-point values.
if ty == self.float_type {
return self.context.new_rvalue_from_double(ty, f32::from_bits(data as u32) as f64);
}
else if ty == self.double_type {
return self.context.new_rvalue_from_double(ty, f64::from_bits(data as u64));
}
let value = self.const_uint_big(self.type_ix(bitsize), data);
if layout.value == Pointer {
self.inttoptr(self.current_block.borrow().expect("block"), value, ty)
} else {
self.const_bitcast(value, ty)
}
}
Scalar::Ptr(ptr, _size) => {
let (alloc_id, offset) = ptr.into_parts();
let base_addr =
match self.tcx.global_alloc(alloc_id) {
GlobalAlloc::Memory(alloc) => {
let init = const_alloc_to_gcc(self, alloc);
let value =
match alloc.mutability {
Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
_ => self.static_addr_of(init, alloc.align, None),
};
if !self.sess().fewer_names() {
// TODO
//llvm::set_value_name(value, format!("{:?}", ptr.alloc_id).as_bytes());
}
value
},
GlobalAlloc::Function(fn_instance) => {
self.get_fn_addr(fn_instance)
},
GlobalAlloc::Static(def_id) => {
assert!(self.tcx.is_static(def_id));
self.get_static(def_id)
},
};
let ptr_type = base_addr.get_type();
let base_addr = self.const_bitcast(base_addr, self.usize_type);
let offset = self.context.new_rvalue_from_long(self.usize_type, offset.bytes() as i64);
let ptr = self.const_bitcast(base_addr + offset, ptr_type);
let value = ptr.dereference(None);
if layout.value != Pointer {
self.const_bitcast(value.to_rvalue(), ty)
}
else {
self.const_bitcast(value.get_address(None), ty)
}
}
}
}
fn const_data_from_alloc(&self, alloc: &Allocation) -> Self::Value {
const_alloc_to_gcc(self, alloc)
}
fn from_const_alloc(&self, layout: TyAndLayout<'tcx>, alloc: &Allocation, offset: Size) -> PlaceRef<'tcx, RValue<'gcc>> {
assert_eq!(alloc.align, layout.align.abi);
let ty = self.type_ptr_to(layout.gcc_type(self, true));
let value =
if layout.size == Size::ZERO {
let value = self.const_usize(alloc.align.bytes());
self.context.new_cast(None, value, ty)
}
else {
let init = const_alloc_to_gcc(self, alloc);
let base_addr = self.static_addr_of(init, alloc.align, None);
let array = self.const_bitcast(base_addr, self.type_i8p());
let value = self.context.new_array_access(None, array, self.const_usize(offset.bytes())).get_address(None);
self.const_bitcast(value, ty)
};
PlaceRef::new_sized(value, layout)
}
fn const_ptrcast(&self, val: RValue<'gcc>, ty: Type<'gcc>) -> RValue<'gcc> {
self.context.new_cast(None, val, ty)
}
}
pub trait SignType<'gcc, 'tcx> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
}
impl<'gcc, 'tcx> SignType<'gcc, 'tcx> for Type<'gcc> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_i8(cx) || self.is_i16(cx) || self.is_i32(cx) || self.is_i64(cx) || self.is_i128(cx)
}
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_u8(cx) || self.is_u16(cx) || self.is_u32(cx) || self.is_u64(cx) || self.is_u128(cx)
}
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if self.is_u8(cx) {
cx.i8_type
}
else if self.is_u16(cx) {
cx.i16_type
}
else if self.is_u32(cx) {
cx.i32_type
}
else if self.is_u64(cx) {
cx.i64_type
}
else if self.is_u128(cx) {
cx.i128_type
}
else {
self.clone()
}
}
}
pub trait TypeReflection<'gcc, 'tcx> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
}
impl<'gcc, 'tcx> TypeReflection<'gcc, 'tcx> for Type<'gcc> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u8_type
}
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u16_type
}
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.uint_type
}
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulong_type
}
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulonglong_type
}
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i8_type
}
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u8_type
}
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i16_type
}
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u16_type
}
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i32_type
}
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u32_type
}
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i64_type
}
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u64_type
}
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_c_type(CType::Int128t)
}
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_c_type(CType::UInt128t)
}
fn is_f32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_type::<f32>()
}
fn is_f64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.context.new_type::<f64>()
}
}

View File

@@ -0,0 +1,527 @@
use gccjit::{RValue, Type};
use rustc_codegen_ssa::traits::{BaseTypeMethods, ConstMethods, DerivedTypeMethods, StaticMethods};
use rustc_hir as hir;
use rustc_hir::Node;
use rustc_middle::{bug, span_bug};
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::mono::MonoItem;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_mir::interpret::{self, Allocation, ErrorHandled, Scalar as InterpScalar, read_target_uint};
use rustc_span::Span;
use rustc_span::def_id::DefId;
use rustc_target::abi::{self, Align, HasDataLayout, LayoutOf, Primitive, Size};
use crate::base;
use crate::context::CodegenCx;
use crate::mangled_std_symbols::{ARGC, ARGV, ARGV_INIT_ARRAY};
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_bitcast(&self, value: RValue<'gcc>, typ: Type<'gcc>) -> RValue<'gcc> {
if value.get_type() == self.bool_type.make_pointer() {
if let Some(pointee) = typ.get_pointee() {
if pointee.is_vector().is_some() {
panic!()
}
}
}
self.context.new_bitcast(None, value, typ)
}
}
impl<'gcc, 'tcx> StaticMethods for CodegenCx<'gcc, 'tcx> {
fn static_addr_of(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
if let Some(global_value) = self.const_globals.borrow().get(&cv) {
// TODO
/*unsafe {
// Upgrade the alignment in cases where the same constant is used with different
// alignment requirements
let llalign = align.bytes() as u32;
if llalign > llvm::LLVMGetAlignment(gv) {
llvm::LLVMSetAlignment(gv, llalign);
}
}*/
return *global_value;
}
let global_value = self.static_addr_of_mut(cv, align, kind);
// TODO
/*unsafe {
llvm::LLVMSetGlobalConstant(global_value, True);
}*/
self.const_globals.borrow_mut().insert(cv, global_value);
global_value
}
fn codegen_static(&self, def_id: DefId, is_mutable: bool) {
let attrs = self.tcx.codegen_fn_attrs(def_id);
let instance = Instance::mono(self.tcx, def_id);
let name = &*self.tcx.symbol_name(instance).name;
let (value, alloc) =
match codegen_static_initializer(&self, def_id) {
Ok(value) => value,
// Error has already been reported
Err(_) => return,
};
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let global = self.get_static(def_id);
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val_llty = self.val_ty(value);
let value =
if val_llty == self.type_i1() {
//val_llty = self.type_i8();
unimplemented!();
//llvm::LLVMConstZExt(value, val_llty)
}
else {
value
};
let instance = Instance::mono(self.tcx, def_id);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let gcc_type = self.layout_of(ty).gcc_type(self, true);
let global =
if val_llty == gcc_type {
global
}
else {
// If we created the global with the wrong type,
// correct the type.
/*let name = llvm::get_value_name(global).to_vec();
llvm::set_value_name(global, b"");
let linkage = llvm::LLVMRustGetLinkage(global);
let visibility = llvm::LLVMRustGetVisibility(global);*/
let new_global = self.get_or_insert_global(&name, val_llty, is_tls, attrs.link_section);
/*llvm::LLVMRustSetLinkage(new_global, linkage);
llvm::LLVMRustSetVisibility(new_global, visibility);*/
// To avoid breaking any invariants, we leave around the old
// global for the moment; we'll replace all references to it
// with the new global later. (See base::codegen_backend.)
//self.statics_to_rauw.borrow_mut().push((global, new_global));
new_global
};
// TODO
//set_global_alignment(&self, global, self.align_of(ty));
//llvm::LLVMSetInitializer(global, value);
let value = self.rvalue_as_lvalue(value);
let value = value.get_address(None);
let dest_typ = global.get_type();
let value = self.context.new_cast(None, value, dest_typ);
// NOTE: do not init the variables related to argc/argv because it seems we cannot
// overwrite those variables.
// FIXME: correctly support global variable initialization.
let skip_init = [
ARGV_INIT_ARRAY,
ARGC,
ARGV,
];
if !skip_init.iter().any(|symbol_name| name.starts_with(symbol_name)) {
// TODO: switch to set_initializer when libgccjit supports that.
let memcpy = self.context.get_builtin_function("memcpy");
let dst = self.context.new_cast(None, global, self.type_i8p());
let src = self.context.new_cast(None, value, self.type_ptr_to(self.type_void()));
let size = self.context.new_rvalue_from_long(self.sizet_type, alloc.size().bytes() as i64);
self.global_init_block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size]));
}
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if !is_mutable {
if self.type_is_freeze(ty) {
// TODO
//llvm::LLVMSetGlobalConstant(global, llvm::True);
}
}
//debuginfo::create_global_var_metadata(&self, def_id, global);
if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
// Do not allow LLVM to change the alignment of a TLS on macOS.
//
// By default a global's alignment can be freely increased.
// This allows LLVM to generate more performant instructions
// e.g., using load-aligned into a SIMD register.
//
// However, on macOS 10.10 or below, the dynamic linker does not
// respect any alignment given on the TLS (radar 24221680).
// This will violate the alignment assumption, and causing segfault at runtime.
//
// This bug is very easy to trigger. In `println!` and `panic!`,
// the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS,
// which the values would be `mem::replace`d on initialization.
// The implementation of `mem::replace` will use SIMD
// whenever the size is 32 bytes or higher. LLVM notices SIMD is used
// and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary,
// which macOS's dyld disregarded and causing crashes
// (see issues #51794, #51758, #50867, #48866 and #44056).
//
// To workaround the bug, we trick LLVM into not increasing
// the global's alignment by explicitly assigning a section to it
// (equivalent to automatically generating a `#[link_section]` attribute).
// See the comment in the `GlobalValue::canIncreaseAlignment()` function
// of `lib/IR/Globals.cpp` for why this works.
//
// When the alignment is not increased, the optimized `mem::replace`
// will use load-unaligned instructions instead, and thus avoiding the crash.
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.options.is_like_osx {
// The `inspect` method is okay here because we checked relocations, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
// FIXME: This check requires that the (arbitrary) value of undefined bytes
// happens to be zero. Instead, we should only check the value of defined bytes
// and set all undefined bytes to zero if this allocation is headed for the
// BSS.
/*let all_bytes_are_zero = alloc.relocations().is_empty()
&& alloc
.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len())
.iter()
.all(|&byte| byte == 0);
let sect_name = if all_bytes_are_zero {
CStr::from_bytes_with_nul_unchecked(b"__DATA,__thread_bss\0")
} else {
CStr::from_bytes_with_nul_unchecked(b"__DATA,__thread_data\0")
};*/
unimplemented!();
//llvm::LLVMSetSection(global, sect_name.as_ptr());
}
}
// Wasm statics with custom link sections get special treatment as they
// go into custom sections of the wasm executable.
if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") {
if let Some(_section) = attrs.link_section {
unimplemented!();
/*let section = llvm::LLVMMDStringInContext(
self.llcx,
section.as_str().as_ptr().cast(),
section.as_str().len() as c_uint,
);
assert!(alloc.relocations().is_empty());
// The `inspect` method is okay here because we checked relocations, and
// because we are doing this access to inspect the final interpreter state (not
// as part of the interpreter execution).
let bytes =
alloc.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len());
let alloc = llvm::LLVMMDStringInContext(
self.llcx,
bytes.as_ptr().cast(),
bytes.len() as c_uint,
);
let data = [section, alloc];
let meta = llvm::LLVMMDNodeInContext(self.llcx, data.as_ptr(), 2);
llvm::LLVMAddNamedMetadataOperand(
self.llmod,
"wasm.custom_sections\0".as_ptr().cast(),
meta,
);*/
}
} else {
// TODO
//base::set_link_section(global, &attrs);
}
if attrs.flags.contains(CodegenFnAttrFlags::USED) {
self.add_used_global(global);
}
}
/// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*.
fn add_used_global(&self, _global: RValue<'gcc>) {
// TODO
//let cast = self.context.new_cast(None, global, self.type_i8p());
//self.used_statics.borrow_mut().push(cast);
}
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn static_addr_of_mut(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
let (name, gv) =
match kind {
Some(kind) if !self.tcx.sess.fewer_names() => {
let name = self.generate_local_symbol_name(kind);
// TODO: check if it's okay that TLS is off here.
// TODO: check if it's okay that link_section is None here.
// TODO: set alignment here as well.
let gv = self.define_global(&name[..], self.val_ty(cv), false, None).unwrap_or_else(|| {
bug!("symbol `{}` is already defined", name);
});
//llvm::LLVMRustSetLinkage(gv, llvm::Linkage::PrivateLinkage);
(name, gv)
}
_ => {
let index = self.global_gen_sym_counter.get();
let name = format!("global_{}_{}", index, self.codegen_unit.name());
let typ = self.val_ty(cv).get_aligned(align.bytes());
let global = self.define_private_global(typ);
(name, global)
},
};
// FIXME: I think the name coming from generate_local_symbol_name() above cannot be used
// globally.
// NOTE: global seems to only be global in a module. So save the name instead of the value
// to import it later.
self.global_names.borrow_mut().insert(cv, name);
self.global_init_block.add_assignment(None, gv.dereference(None), cv);
//llvm::SetUnnamedAddress(gv, llvm::UnnamedAddr::Global);
gv
}
pub fn get_static(&self, def_id: DefId) -> RValue<'gcc> {
let instance = Instance::mono(self.tcx, def_id);
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
if let Some(&global) = self.instances.borrow().get(&instance) {
/*let attrs = self.tcx.codegen_fn_attrs(def_id);
let name = &*self.tcx.symbol_name(instance).name;
let name =
if let Some(linkage) = attrs.linkage {
// This is to match what happens in check_and_apply_linkage.
Cow::from(format!("_rust_extern_with_linkage_{}", name))
}
else {
Cow::from(name)
};
let global = self.context.new_global(None, GlobalKind::Imported, global.get_type(), &name)
.get_address(None);
self.global_names.borrow_mut().insert(global, name.to_string());*/
return global;
}
let defined_in_current_codegen_unit =
self.codegen_unit.items().contains_key(&MonoItem::Static(def_id));
assert!(
!defined_in_current_codegen_unit,
"consts::get_static() should always hit the cache for \
statics defined in the same CGU, but did not for `{:?}`",
def_id
);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let sym = self.tcx.symbol_name(instance).name;
//debug!("get_static: sym={} instance={:?}", sym, instance);
let global =
if let Some(def_id) = def_id.as_local() {
let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
let llty = self.layout_of(ty).gcc_type(self, true);
// FIXME: refactor this to work without accessing the HIR
let global = match self.tcx.hir().get(id) {
Node::Item(&hir::Item { span, kind: hir::ItemKind::Static(..), .. }) => {
if let Some(global) = self.get_declared_value(&sym) {
if self.val_ty(global) != self.type_ptr_to(llty) {
span_bug!(span, "Conflicting types for static");
}
}
let is_tls = fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let global = self.declare_global(&sym, llty, is_tls, fn_attrs.link_section);
if !self.tcx.is_reachable_non_generic(def_id) {
/*unsafe {
llvm::LLVMRustSetVisibility(global, llvm::Visibility::Hidden);
}*/
}
global
}
Node::ForeignItem(&hir::ForeignItem {
span,
kind: hir::ForeignItemKind::Static(..),
..
}) => {
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
check_and_apply_linkage(&self, &fn_attrs, ty, sym, span)
}
item => bug!("get_static: expected static, found {:?}", item),
};
//debug!("get_static: sym={} attrs={:?}", sym, attrs);
global
}
else {
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
//debug!("get_static: sym={} item_attr={:?}", sym, self.tcx.item_attrs(def_id));
let attrs = self.tcx.codegen_fn_attrs(def_id);
let span = self.tcx.def_span(def_id);
let global = check_and_apply_linkage(&self, &attrs, ty, sym, span);
let needs_dll_storage_attr = false; /*self.use_dll_storage_attrs && !self.tcx.is_foreign_item(def_id) &&
// ThinLTO can't handle this workaround in all cases, so we don't
// emit the attrs. Instead we make them unnecessary by disallowing
// dynamic linking when linker plugin based LTO is enabled.
!self.tcx.sess.opts.cg.linker_plugin_lto.enabled();*/
// If this assertion triggers, there's something wrong with commandline
// argument validation.
debug_assert!(
!(self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
&& self.tcx.sess.target.options.is_like_msvc
&& self.tcx.sess.opts.cg.prefer_dynamic)
);
if needs_dll_storage_attr {
// This item is external but not foreign, i.e., it originates from an external Rust
// crate. Since we don't know whether this crate will be linked dynamically or
// statically in the final application, we always mark such symbols as 'dllimport'.
// If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs
// to make things work.
//
// However, in some scenarios we defer emission of statics to downstream
// crates, so there are cases where a static with an upstream DefId
// is actually present in the current crate. We can find out via the
// is_codegened_item query.
if !self.tcx.is_codegened_item(def_id) {
unimplemented!();
/*unsafe {
llvm::LLVMSetDLLStorageClass(global, llvm::DLLStorageClass::DllImport);
}*/
}
}
global
};
/*if self.use_dll_storage_attrs && self.tcx.is_dllimport_foreign_item(def_id) {
// For foreign (native) libs we know the exact storage type to use.
unsafe {
llvm::LLVMSetDLLStorageClass(global, llvm::DLLStorageClass::DllImport);
}
}*/
self.instances.borrow_mut().insert(instance, global);
global
}
}
pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: &Allocation) -> RValue<'gcc> {
let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
let mut next_offset = 0;
for &(offset, alloc_id) in alloc.relocations().iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that it is not within a relocation, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution). Any undef byte is replaced with
// some arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset);
llvals.push(cx.const_bytes(bytes));
}
let ptr_offset =
read_target_uint( dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the relocation as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
as u64;
llvals.push(cx.scalar_to_backend(
InterpScalar::from_pointer(
interpret::Pointer::new(alloc_id, Size::from_bytes(ptr_offset)),
&cx.tcx,
),
&abi::Scalar { value: Primitive::Pointer, valid_range: 0..=!0 },
cx.type_i8p(),
));
next_offset = offset + pointer_size;
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all relocations, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution). Any undef byte is replaced with some
// arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
llvals.push(cx.const_bytes(bytes));
}
cx.const_struct(&llvals, true)
}
pub fn codegen_static_initializer<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, def_id: DefId) -> Result<(RValue<'gcc>, &'tcx Allocation), ErrorHandled> {
let alloc = cx.tcx.eval_static_initializer(def_id)?;
Ok((const_alloc_to_gcc(cx, alloc), alloc))
}
fn check_and_apply_linkage<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, attrs: &CodegenFnAttrs, ty: Ty<'tcx>, sym: &str, span: Span) -> RValue<'gcc> {
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let llty = cx.layout_of(ty).gcc_type(cx, true);
if let Some(linkage) = attrs.linkage {
//debug!("get_static: sym={} linkage={:?}", sym, linkage);
// If this is a static with a linkage specified, then we need to handle
// it a little specially. The typesystem prevents things like &T and
// extern "C" fn() from being non-null, so we can't just declare a
// static and call it a day. Some linkages (like weak) will make it such
// that the static actually has a null value.
let llty2 =
if let ty::RawPtr(ref mt) = ty.kind() {
cx.layout_of(mt.ty).gcc_type(cx, true)
}
else {
cx.sess().span_fatal(
span,
"must have type `*const T` or `*mut T` due to `#[linkage]` attribute",
)
};
// Declare a symbol `foo` with the desired linkage.
let global1 = cx.declare_global_with_linkage(&sym, llty2, base::global_linkage_to_gcc(linkage));
// Declare an internal global `extern_with_linkage_foo` which
// is initialized with the address of `foo`. If `foo` is
// discarded during linking (for example, if `foo` has weak
// linkage and there are no definitions), then
// `extern_with_linkage_foo` will instead be initialized to
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(&sym);
let global2 =
cx.define_global(&real_name, llty, is_tls, attrs.link_section).unwrap_or_else(|| {
cx.sess().span_fatal(span, &format!("symbol `{}` is already defined", &sym))
});
//llvm::LLVMRustSetLinkage(global2, llvm::Linkage::InternalLinkage);
let lvalue = global2.dereference(None);
cx.global_init_block.add_assignment(None, lvalue, global1);
//llvm::LLVMSetInitializer(global2, global1);
global2
}
else {
// Generate an external declaration.
// FIXME(nagisa): investigate whether it can be changed into define_global
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
cx.declare_global(&sym, llty, is_tls, attrs.link_section)
}
}

View File

@@ -0,0 +1,491 @@
use std::cell::{Cell, RefCell};
use gccjit::{
Block,
Context,
CType,
Function,
FunctionType,
LValue,
RValue,
Struct,
Type,
};
use rustc_codegen_ssa::base::wants_msvc_seh;
use rustc_codegen_ssa::traits::{
BackendTypes,
BaseTypeMethods,
MiscMethods,
};
use rustc_data_structures::base_n;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::bug;
use rustc_middle::mir::mono::CodegenUnit;
use rustc_middle::ty::{self, Instance, ParamEnv, PolyExistentialTraitRef, Ty, TyCtxt};
use rustc_middle::ty::layout::{HasParamEnv, HasTyCtxt, LayoutError, TyAndLayout};
use rustc_session::Session;
use rustc_span::{Span, Symbol, DUMMY_SP};
use rustc_target::abi::{HasDataLayout, LayoutOf, PointeeInfo, Size, TargetDataLayout, VariantIdx};
use rustc_target::spec::{HasTargetSpec, Target, TlsModel};
use crate::callee::get_fn;
use crate::declare::mangle_name;
#[derive(Clone)]
pub struct FuncSig<'gcc> {
pub params: Vec<Type<'gcc>>,
pub return_type: Type<'gcc>,
}
pub struct CodegenCx<'gcc, 'tcx> {
pub check_overflow: bool,
pub codegen_unit: &'tcx CodegenUnit<'tcx>,
pub context: &'gcc Context<'gcc>,
// TODO: First set it to a dummy block to avoid using Option?
pub current_block: RefCell<Option<Block<'gcc>>>,
pub current_func: RefCell<Option<Function<'gcc>>>,
pub normal_function_addresses: RefCell<FxHashSet<RValue<'gcc>>>,
/// The function where globals are initialized.
pub global_init_func: Function<'gcc>,
pub global_init_block: Block<'gcc>,
pub functions: RefCell<FxHashMap<String, Function<'gcc>>>,
pub tls_model: gccjit::TlsModel,
pub bool_type: Type<'gcc>,
pub i8_type: Type<'gcc>,
pub i16_type: Type<'gcc>,
pub i32_type: Type<'gcc>,
pub i64_type: Type<'gcc>,
pub i128_type: Type<'gcc>,
pub isize_type: Type<'gcc>,
pub u8_type: Type<'gcc>,
pub u16_type: Type<'gcc>,
pub u32_type: Type<'gcc>,
pub u64_type: Type<'gcc>,
pub u128_type: Type<'gcc>,
pub usize_type: Type<'gcc>,
pub int_type: Type<'gcc>,
pub uint_type: Type<'gcc>,
pub long_type: Type<'gcc>,
pub ulong_type: Type<'gcc>,
pub ulonglong_type: Type<'gcc>,
pub sizet_type: Type<'gcc>,
pub float_type: Type<'gcc>,
pub double_type: Type<'gcc>,
pub linkage: Cell<FunctionType>,
pub scalar_types: RefCell<FxHashMap<Ty<'tcx>, Type<'gcc>>>,
pub types: RefCell<FxHashMap<(Ty<'tcx>, Option<VariantIdx>), Type<'gcc>>>,
pub tcx: TyCtxt<'tcx>,
pub struct_types: RefCell<FxHashMap<Vec<Type<'gcc>>, Type<'gcc>>>,
pub types_with_fields_to_set: RefCell<FxHashMap<Type<'gcc>, (Struct<'gcc>, TyAndLayout<'tcx>)>>,
/// Cache instances of monomorphic and polymorphic items
pub instances: RefCell<FxHashMap<Instance<'tcx>, RValue<'gcc>>>,
/// Cache generated vtables
pub vtables: RefCell<FxHashMap<(Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>), RValue<'gcc>>>,
/// Cache of emitted const globals (value -> global)
pub const_globals: RefCell<FxHashMap<RValue<'gcc>, RValue<'gcc>>>,
pub init_argv_var: RefCell<String>,
pub argv_initialized: Cell<bool>,
/// Cache of constant strings,
pub const_cstr_cache: RefCell<FxHashMap<Symbol, LValue<'gcc>>>,
/// Cache of globals.
pub globals: RefCell<FxHashMap<String, RValue<'gcc>>>,
// TODO: remove global_names.
pub global_names: RefCell<FxHashMap<RValue<'gcc>, String>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
pub global_gen_sym_counter: Cell<usize>,
eh_personality: Cell<Option<RValue<'gcc>>>,
pub pointee_infos: RefCell<FxHashMap<(Ty<'tcx>, Size), Option<PointeeInfo>>>,
/// NOTE: a hack is used because the rustc API is not suitable to libgccjit and as such,
/// `const_undef()` returns struct as pointer so that they can later be assigned a value.
/// As such, this set remembers which of these pointers were returned by this function so that
/// they can be derefered later.
/// FIXME: fix the rustc API to avoid having this hack.
pub structs_as_pointer: RefCell<FxHashSet<RValue<'gcc>>>,
/// Store the pointer of different types for safety.
/// When casting the values back to their original types, check that they are indeed that type
/// with these sets.
/// FIXME: remove when the API supports more types.
#[cfg(debug_assertions)]
lvalues: RefCell<FxHashSet<LValue<'gcc>>>,
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn new(context: &'gcc Context<'gcc>, codegen_unit: &'tcx CodegenUnit<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
let check_overflow = tcx.sess.overflow_checks();
// TODO: fix this mess. libgccjit seems to return random type when using new_int_type().
//let isize_type = context.new_int_type((tcx.data_layout.pointer_size.bits() / 8) as i32, true);
let isize_type = context.new_c_type(CType::LongLong);
//let usize_type = context.new_int_type((tcx.data_layout.pointer_size.bits() / 8) as i32, false);
let usize_type = context.new_c_type(CType::ULongLong);
let bool_type = context.new_type::<bool>();
let i8_type = context.new_type::<i8>();
let i16_type = context.new_type::<i16>();
let i32_type = context.new_type::<i32>();
let i64_type = context.new_c_type(CType::LongLong);
let i128_type = context.new_c_type(CType::Int128t).get_aligned(8); // TODO: should this be hard-coded?
let u8_type = context.new_type::<u8>();
let u16_type = context.new_type::<u16>();
let u32_type = context.new_type::<u32>();
let u64_type = context.new_c_type(CType::ULongLong);
let u128_type = context.new_c_type(CType::UInt128t).get_aligned(8); // TODO: should this be hard-coded?
let tls_model = to_gcc_tls_mode(tcx.sess.tls_model());
let float_type = context.new_type::<f32>();
let double_type = context.new_type::<f64>();
let int_type = context.new_c_type(CType::Int);
let uint_type = context.new_c_type(CType::UInt);
let long_type = context.new_c_type(CType::Long);
let ulong_type = context.new_c_type(CType::ULong);
let ulonglong_type = context.new_c_type(CType::ULongLong);
let sizet_type = context.new_c_type(CType::SizeT);
assert_eq!(isize_type, i64_type);
assert_eq!(usize_type, u64_type);
let mut functions = FxHashMap::default();
let builtins = [
"__builtin_unreachable", "abort", "__builtin_expect", "__builtin_add_overflow", "__builtin_mul_overflow",
"__builtin_saddll_overflow", /*"__builtin_sadd_overflow",*/ "__builtin_smulll_overflow", /*"__builtin_smul_overflow",*/
"__builtin_ssubll_overflow", /*"__builtin_ssub_overflow",*/ "__builtin_sub_overflow", "__builtin_uaddll_overflow",
"__builtin_uadd_overflow", "__builtin_umulll_overflow", "__builtin_umul_overflow", "__builtin_usubll_overflow",
"__builtin_usub_overflow", "sqrtf", "sqrt", "__builtin_powif", "__builtin_powi", "sinf", "sin", "cosf", "cos",
"powf", "pow", "expf", "exp", "exp2f", "exp2", "logf", "log", "log10f", "log10", "log2f", "log2", "fmaf",
"fma", "fabsf", "fabs", "fminf", "fmin", "fmaxf", "fmax", "copysignf", "copysign", "floorf", "floor", "ceilf",
"ceil", "truncf", "trunc", "rintf", "rint", "nearbyintf", "nearbyint", "roundf", "round",
"__builtin_expect_with_probability",
];
for builtin in builtins.iter() {
functions.insert(builtin.to_string(), context.get_builtin_function(builtin));
}
let global_init_func = context.new_function(None, FunctionType::Exported, context.new_type::<()>(), &[],
&format!("__gccGlobalInit{}", unit_name(&codegen_unit)), false);
let global_init_block = global_init_func.new_block("initial");
Self {
check_overflow,
codegen_unit,
context,
current_block: RefCell::new(None),
current_func: RefCell::new(None),
normal_function_addresses: Default::default(),
functions: RefCell::new(functions),
global_init_func,
global_init_block,
tls_model,
bool_type,
i8_type,
i16_type,
i32_type,
i64_type,
i128_type,
isize_type,
usize_type,
u8_type,
u16_type,
u32_type,
u64_type,
u128_type,
int_type,
uint_type,
long_type,
ulong_type,
ulonglong_type,
sizet_type,
float_type,
double_type,
linkage: Cell::new(FunctionType::Internal),
#[cfg(debug_assertions)]
lvalues: Default::default(),
instances: Default::default(),
vtables: Default::default(),
const_globals: Default::default(),
init_argv_var: RefCell::new(String::new()),
argv_initialized: Cell::new(false),
const_cstr_cache: Default::default(),
global_names: Default::default(),
globals: Default::default(),
scalar_types: Default::default(),
types: Default::default(),
tcx,
struct_types: Default::default(),
types_with_fields_to_set: Default::default(),
local_gen_sym_counter: Cell::new(0),
global_gen_sym_counter: Cell::new(0),
eh_personality: Cell::new(None),
pointee_infos: Default::default(),
structs_as_pointer: Default::default(),
}
}
pub fn lvalue_to_rvalue(&self, value: LValue<'gcc>) -> RValue<'gcc> {
#[cfg(debug_assertions)]
self.lvalues.borrow_mut().insert(value);
unsafe { std::mem::transmute(value) }
}
pub fn rvalue_as_function(&self, value: RValue<'gcc>) -> Function<'gcc> {
let function: Function<'gcc> = unsafe { std::mem::transmute(value) };
debug_assert!(self.functions.borrow().values().find(|value| **value == function).is_some(),
"{:?} ({:?}) is not a function", value, value.get_type());
function
}
pub fn rvalue_as_lvalue(&self, value: RValue<'gcc>) -> LValue<'gcc> {
let lvalue: LValue<'gcc> = unsafe { std::mem::transmute(value) };
//debug_assert!(self.lvalues.borrow().contains(&lvalue), "{:?} is not an lvalue", value);
lvalue
}
pub fn sess(&self) -> &Session {
&self.tcx.sess
}
}
impl<'gcc, 'tcx> BackendTypes for CodegenCx<'gcc, 'tcx> {
type Value = RValue<'gcc>;
type Function = RValue<'gcc>;
type BasicBlock = Block<'gcc>;
type Type = Type<'gcc>;
type Funclet = (); // TODO
type DIScope = (); // TODO
type DILocation = (); // TODO
type DIVariable = (); // TODO
}
impl<'gcc, 'tcx> MiscMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn vtables(&self) -> &RefCell<FxHashMap<(Ty<'tcx>, Option<PolyExistentialTraitRef<'tcx>>), RValue<'gcc>>> {
&self.vtables
}
fn get_fn(&self, instance: Instance<'tcx>) -> RValue<'gcc> {
let func = get_fn(self, instance);
*self.current_func.borrow_mut() = Some(self.rvalue_as_function(func));
func
}
fn get_fn_addr(&self, instance: Instance<'tcx>) -> RValue<'gcc> {
//let symbol = self.tcx.symbol_name(instance).name;
let func = get_fn(self, instance);
let func = self.rvalue_as_function(func);
let ptr = func.get_address(None);
// TODO: don't do this twice: i.e. in declare_fn and here.
//let fn_abi = FnAbi::of_instance(self, instance, &[]);
//let (return_type, params, _) = fn_abi.gcc_type(self);
// FIXME: the rustc API seems to call get_fn_addr() when not needed (e.g. for FFI).
//let pointer_type = ptr.get_type();
self.normal_function_addresses.borrow_mut().insert(ptr);
ptr
}
fn eh_personality(&self) -> RValue<'gcc> {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to codegen that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.eh_personality.get() {
return llpersonality;
}
let tcx = self.tcx;
let llfn = match tcx.lang_items().eh_personality() {
Some(def_id) if !wants_msvc_seh(self.sess()) => self.get_fn_addr(
ty::Instance::resolve(
tcx,
ty::ParamEnv::reveal_all(),
def_id,
tcx.intern_substs(&[]),
)
.unwrap().unwrap(),
),
_ => {
let name = if wants_msvc_seh(self.sess()) {
"__CxxFrameHandler3"
} else {
"rust_eh_personality"
};
self.declare_func(name, self.type_i32(), &[], true)
}
};
//attributes::apply_target_cpu_attr(self, llfn);
self.eh_personality.set(Some(llfn));
llfn
}
fn sess(&self) -> &Session {
&self.tcx.sess
}
fn check_overflow(&self) -> bool {
self.check_overflow
}
fn codegen_unit(&self) -> &'tcx CodegenUnit<'tcx> {
self.codegen_unit
}
fn used_statics(&self) -> &RefCell<Vec<RValue<'gcc>>> {
unimplemented!();
//&self.used_statics
}
fn set_frame_pointer_type(&self, _llfn: RValue<'gcc>) {
// TODO
//attributes::set_frame_pointer_type(self, llfn)
}
fn apply_target_cpu_attr(&self, _llfn: RValue<'gcc>) {
// TODO
//attributes::apply_target_cpu_attr(self, llfn)
}
fn create_used_variable(&self) {
unimplemented!();
/*let name = const_cstr!("llvm.used");
let section = const_cstr!("llvm.metadata");
let array =
self.const_array(&self.type_ptr_to(self.type_i8()), &*self.used_statics.borrow());
unsafe {
let g = llvm::LLVMAddGlobal(self.llmod, self.val_ty(array), name.as_ptr());
llvm::LLVMSetInitializer(g, array);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::AppendingLinkage);
llvm::LLVMSetSection(g, section.as_ptr());
}*/
}
fn declare_c_main(&self, fn_type: Self::Type) -> Option<Self::Function> {
if self.get_declared_value("main").is_none() {
Some(self.declare_cfn("main", fn_type))
}
else {
// If the symbol already exists, it is an error: for example, the user wrote
// #[no_mangle] extern "C" fn main(..) {..}
// instead of #[start]
None
}
}
}
impl<'gcc, 'tcx> HasTyCtxt<'tcx> for CodegenCx<'gcc, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'gcc, 'tcx> HasDataLayout for CodegenCx<'gcc, 'tcx> {
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'gcc, 'tcx> HasTargetSpec for CodegenCx<'gcc, 'tcx> {
fn target_spec(&self) -> &Target {
&self.tcx.sess.target
}
}
impl<'gcc, 'tcx> LayoutOf for CodegenCx<'gcc, 'tcx> {
type Ty = Ty<'tcx>;
type TyAndLayout = TyAndLayout<'tcx>;
fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout {
self.spanned_layout_of(ty, DUMMY_SP)
}
fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::TyAndLayout {
self.tcx.layout_of(ParamEnv::reveal_all().and(ty)).unwrap_or_else(|e| {
if let LayoutError::SizeOverflow(_) = e {
self.sess().span_fatal(span, &e.to_string())
} else {
bug!("failed to get layout for `{}`: {}", ty, e)
}
})
}
}
impl<'tcx, 'gcc> HasParamEnv<'tcx> for CodegenCx<'gcc, 'tcx> {
fn param_env(&self) -> ParamEnv<'tcx> {
ParamEnv::reveal_all()
}
}
impl<'b, 'tcx> CodegenCx<'b, 'tcx> {
/// Generates a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local_gen_sym_counter.get();
self.local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
name.push_str(prefix);
name.push_str(".");
base_n::push_str(idx as u128, base_n::ALPHANUMERIC_ONLY, &mut name);
name
}
}
pub fn unit_name<'tcx>(codegen_unit: &CodegenUnit<'tcx>) -> String {
let name = &codegen_unit.name().to_string();
mangle_name(&name.replace('-', "_"))
}
fn to_gcc_tls_mode(tls_model: TlsModel) -> gccjit::TlsModel {
match tls_model {
TlsModel::GeneralDynamic => gccjit::TlsModel::GlobalDynamic,
TlsModel::LocalDynamic => gccjit::TlsModel::LocalDynamic,
TlsModel::InitialExec => gccjit::TlsModel::InitialExec,
TlsModel::LocalExec => gccjit::TlsModel::LocalExec,
}
}

View File

@@ -0,0 +1,140 @@
use gccjit::RValue;
use rustc_codegen_ssa::traits::{CoverageInfoBuilderMethods, CoverageInfoMethods};
use rustc_hir::def_id::DefId;
use rustc_middle::mir::coverage::{
CodeRegion,
CounterValueReference,
ExpressionOperandId,
InjectedExpressionId,
Op,
};
use rustc_middle::ty::Instance;
use crate::builder::Builder;
use crate::context::CodegenCx;
impl<'a, 'gcc, 'tcx> CoverageInfoBuilderMethods<'tcx> for Builder<'a, 'gcc, 'tcx> {
fn set_function_source_hash(
&mut self,
_instance: Instance<'tcx>,
_function_source_hash: u64,
) -> bool {
unimplemented!();
/*if let Some(coverage_context) = self.coverage_context() {
debug!(
"ensuring function source hash is set for instance={:?}; function_source_hash={}",
instance, function_source_hash,
);
let mut coverage_map = coverage_context.function_coverage_map.borrow_mut();
coverage_map
.entry(instance)
.or_insert_with(|| FunctionCoverage::new(self.tcx, instance))
.set_function_source_hash(function_source_hash);
true
} else {
false
}*/
}
fn add_coverage_counter(&mut self, _instance: Instance<'tcx>, _id: CounterValueReference, _region: CodeRegion) -> bool {
/*if let Some(coverage_context) = self.coverage_context() {
debug!(
"adding counter to coverage_regions: instance={:?}, function_source_hash={}, id={:?}, \
at {:?}",
instance, function_source_hash, id, region,
);
let mut coverage_regions = coverage_context.function_coverage_map.borrow_mut();
coverage_regions
.entry(instance)
.or_insert_with(|| FunctionCoverage::new(self.tcx, instance))
.add_counter(function_source_hash, id, region);
true
} else {
false
}*/
// TODO
false
}
fn add_coverage_counter_expression(&mut self, _instance: Instance<'tcx>, _id: InjectedExpressionId, _lhs: ExpressionOperandId, _op: Op, _rhs: ExpressionOperandId, _region: Option<CodeRegion>) -> bool {
/*if let Some(coverage_context) = self.coverage_context() {
debug!(
"adding counter expression to coverage_regions: instance={:?}, id={:?}, {:?} {:?} {:?}, \
at {:?}",
instance, id, lhs, op, rhs, region,
);
let mut coverage_regions = coverage_context.function_coverage_map.borrow_mut();
coverage_regions
.entry(instance)
.or_insert_with(|| FunctionCoverage::new(self.tcx, instance))
.add_counter_expression(id, lhs, op, rhs, region);
true
} else {
false
}*/
// TODO
false
}
fn add_coverage_unreachable(&mut self, _instance: Instance<'tcx>, _region: CodeRegion) -> bool {
/*if let Some(coverage_context) = self.coverage_context() {
debug!(
"adding unreachable code to coverage_regions: instance={:?}, at {:?}",
instance, region,
);
let mut coverage_regions = coverage_context.function_coverage_map.borrow_mut();
coverage_regions
.entry(instance)
.or_insert_with(|| FunctionCoverage::new(self.tcx, instance))
.add_unreachable_region(region);
true
} else {
false
}*/
// TODO
false
}
}
impl<'gcc, 'tcx> CoverageInfoMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn coverageinfo_finalize(&self) {
// TODO
//mapgen::finalize(self)
}
fn get_pgo_func_name_var(&self, _instance: Instance<'tcx>) -> RValue<'gcc> {
unimplemented!();
/*if let Some(coverage_context) = self.coverage_context() {
debug!("getting pgo_func_name_var for instance={:?}", instance);
let mut pgo_func_name_var_map = coverage_context.pgo_func_name_var_map.borrow_mut();
pgo_func_name_var_map
.entry(instance)
.or_insert_with(|| create_pgo_func_name_var(self, instance))
} else {
bug!("Could not get the `coverage_context`");
}*/
}
/// Functions with MIR-based coverage are normally codegenned _only_ if
/// called. LLVM coverage tools typically expect every function to be
/// defined (even if unused), with at least one call to LLVM intrinsic
/// `instrprof.increment`.
///
/// Codegen a small function that will never be called, with one counter
/// that will never be incremented.
///
/// For used/called functions, the coverageinfo was already added to the
/// `function_coverage_map` (keyed by function `Instance`) during codegen.
/// But in this case, since the unused function was _not_ previously
/// codegenned, collect the coverage `CodeRegion`s from the MIR and add
/// them. The first `CodeRegion` is used to add a single counter, with the
/// same counter ID used in the injected `instrprof.increment` intrinsic
/// call. Since the function is never called, all other `CodeRegion`s can be
/// added as `unreachable_region`s.
fn define_unused_fn(&self, _def_id: DefId) {
unimplemented!();
/*let instance = declare_unused_fn(self, &def_id);
codegen_unused_fn_and_counter(self, instance);
add_unused_function_coverage(self, instance, def_id);*/
}
}

View File

@@ -0,0 +1,407 @@
use gccjit::{FunctionType, RValue};
use rustc_codegen_ssa::mir::debuginfo::{FunctionDebugContext, VariableKind};
use rustc_codegen_ssa::traits::{BuilderMethods, DebugInfoBuilderMethods, DebugInfoMethods};
use rustc_middle::middle::cstore::CrateDepKind;
use rustc_middle::mir;
use rustc_middle::ty::{Instance, Ty};
use rustc_span::{SourceFile, Span, Symbol};
use rustc_span::def_id::LOCAL_CRATE;
use rustc_target::abi::Size;
use rustc_target::abi::call::FnAbi;
use crate::builder::Builder;
use crate::context::CodegenCx;
impl<'a, 'gcc, 'tcx> DebugInfoBuilderMethods for Builder<'a, 'gcc, 'tcx> {
// FIXME(eddyb) find a common convention for all of the debuginfo-related
// names (choose between `dbg`, `debug`, `debuginfo`, `debug_info` etc.).
fn dbg_var_addr(&mut self, _dbg_var: Self::DIVariable, _scope_metadata: Self::DIScope, _variable_alloca: Self::Value, _direct_offset: Size, _indirect_offsets: &[Size]) {
unimplemented!();
/*let cx = self.cx();
// Convert the direct and indirect offsets to address ops.
// FIXME(eddyb) use `const`s instead of getting the values via FFI,
// the values should match the ones in the DWARF standard anyway.
let op_deref = || unsafe { llvm::LLVMRustDIBuilderCreateOpDeref() };
let op_plus_uconst = || unsafe { llvm::LLVMRustDIBuilderCreateOpPlusUconst() };
let mut addr_ops = SmallVec::<[_; 8]>::new();
if direct_offset.bytes() > 0 {
addr_ops.push(op_plus_uconst());
addr_ops.push(direct_offset.bytes() as i64);
}
for &offset in indirect_offsets {
addr_ops.push(op_deref());
if offset.bytes() > 0 {
addr_ops.push(op_plus_uconst());
addr_ops.push(offset.bytes() as i64);
}
}
// FIXME(eddyb) maybe this information could be extracted from `dbg_var`,
// to avoid having to pass it down in both places?
// NB: `var` doesn't seem to know about the column, so that's a limitation.
let dbg_loc = cx.create_debug_loc(scope_metadata, span);
unsafe {
// FIXME(eddyb) replace `llvm.dbg.declare` with `llvm.dbg.addr`.
llvm::LLVMRustDIBuilderInsertDeclareAtEnd(
DIB(cx),
variable_alloca,
dbg_var,
addr_ops.as_ptr(),
addr_ops.len() as c_uint,
dbg_loc,
self.llbb(),
);
}*/
}
/*fn set_source_location(&mut self, scope: Self::DIScope, span: Span) {
unimplemented!();
/*debug!("set_source_location: {}", self.sess().source_map().span_to_string(span));
let dbg_loc = self.cx().create_debug_loc(scope, span);
unsafe {
llvm::LLVMSetCurrentDebugLocation(self.llbuilder, dbg_loc);
}*/
}*/
fn insert_reference_to_gdb_debug_scripts_section_global(&mut self) {
// TODO: replace with gcc_jit_context_new_global_with_initializer() if it's added:
// https://gcc.gnu.org/pipermail/jit/2020q3/001225.html
//
// Call the function to initialize global values here.
// We assume this is only called for the main function.
use std::iter;
for crate_num in self.cx.tcx.crates(()).iter().copied().chain(iter::once(LOCAL_CRATE)) {
// FIXME: better way to find if a crate is of proc-macro type?
if crate_num == LOCAL_CRATE || self.cx.tcx.dep_kind(crate_num) != CrateDepKind::MacrosOnly {
// NOTE: proc-macro crates are not included in the executable, so don't call their
// initialization routine.
let initializer_name = format!("__gccGlobalCrateInit{}", self.cx.tcx.crate_name(crate_num));
let codegen_init_func = self.context.new_function(None, FunctionType::Extern, self.context.new_type::<()>(), &[],
initializer_name, false);
self.llbb().add_eval(None, self.context.new_call(None, codegen_init_func, &[]));
}
}
// TODO
//gdb::insert_reference_to_gdb_debug_scripts_section_global(self)
}
fn set_var_name(&mut self, _value: RValue<'gcc>, _name: &str) {
unimplemented!();
// Avoid wasting time if LLVM value names aren't even enabled.
/*if self.sess().fewer_names() {
return;
}
// Only function parameters and instructions are local to a function,
// don't change the name of anything else (e.g. globals).
let param_or_inst = unsafe {
llvm::LLVMIsAArgument(value).is_some() || llvm::LLVMIsAInstruction(value).is_some()
};
if !param_or_inst {
return;
}
// Avoid replacing the name if it already exists.
// While we could combine the names somehow, it'd
// get noisy quick, and the usefulness is dubious.
if llvm::get_value_name(value).is_empty() {
llvm::set_value_name(value, name.as_bytes());
}*/
}
fn set_dbg_loc(&mut self, _dbg_loc: Self::DILocation) {
unimplemented!();
/*unsafe {
let dbg_loc_as_llval = llvm::LLVMRustMetadataAsValue(self.cx().llcx, dbg_loc);
llvm::LLVMSetCurrentDebugLocation(self.llbuilder, dbg_loc_as_llval);
}*/
}
}
impl<'gcc, 'tcx> DebugInfoMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn create_vtable_metadata(&self, _ty: Ty<'tcx>, _vtable: Self::Value) {
//metadata::create_vtable_metadata(self, ty, vtable)
}
fn create_function_debug_context(&self, _instance: Instance<'tcx>, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>, _llfn: RValue<'gcc>, _mir: &mir::Body<'tcx>) -> Option<FunctionDebugContext<Self::DIScope, Self::DILocation>> {
// TODO
None
}
fn extend_scope_to_file(&self, _scope_metadata: Self::DIScope, _file: &SourceFile) -> Self::DIScope {
unimplemented!();
}
fn debuginfo_finalize(&self) {
//unimplemented!();
}
fn create_dbg_var(&self, _variable_name: Symbol, _variable_type: Ty<'tcx>, _scope_metadata: Self::DIScope, _variable_kind: VariableKind, _span: Span) -> Self::DIVariable {
unimplemented!();
}
fn dbg_scope_fn(&self, _instance: Instance<'tcx>, _fn_abi: &FnAbi<'tcx, Ty<'tcx>>, _maybe_definition_llfn: Option<RValue<'gcc>>) -> Self::DIScope {
unimplemented!();
/*let def_id = instance.def_id();
let containing_scope = get_containing_scope(self, instance);
let span = self.tcx.def_span(def_id);
let loc = self.lookup_debug_loc(span.lo());
let file_metadata = file_metadata(self, &loc.file);
let function_type_metadata = unsafe {
let fn_signature = get_function_signature(self, fn_abi);
llvm::LLVMRustDIBuilderCreateSubroutineType(DIB(self), fn_signature)
};
// Find the enclosing function, in case this is a closure.
let def_key = self.tcx().def_key(def_id);
let mut name = def_key.disambiguated_data.data.to_string();
let enclosing_fn_def_id = self.tcx().closure_base_def_id(def_id);
// Get_template_parameters() will append a `<...>` clause to the function
// name if necessary.
let generics = self.tcx().generics_of(enclosing_fn_def_id);
let substs = instance.substs.truncate_to(self.tcx(), generics);
let template_parameters = get_template_parameters(self, &generics, substs, &mut name);
let linkage_name = &mangled_name_of_instance(self, instance).name;
// Omit the linkage_name if it is the same as subprogram name.
let linkage_name = if &name == linkage_name { "" } else { linkage_name };
// FIXME(eddyb) does this need to be separate from `loc.line` for some reason?
let scope_line = loc.line;
let mut flags = DIFlags::FlagPrototyped;
if fn_abi.ret.layout.abi.is_uninhabited() {
flags |= DIFlags::FlagNoReturn;
}
let mut spflags = DISPFlags::SPFlagDefinition;
if is_node_local_to_unit(self, def_id) {
spflags |= DISPFlags::SPFlagLocalToUnit;
}
if self.sess().opts.optimize != config::OptLevel::No {
spflags |= DISPFlags::SPFlagOptimized;
}
if let Some((id, _)) = self.tcx.entry_fn(LOCAL_CRATE) {
if id.to_def_id() == def_id {
spflags |= DISPFlags::SPFlagMainSubprogram;
}
}
unsafe {
return llvm::LLVMRustDIBuilderCreateFunction(
DIB(self),
containing_scope,
name.as_ptr().cast(),
name.len(),
linkage_name.as_ptr().cast(),
linkage_name.len(),
file_metadata,
loc.line.unwrap_or(UNKNOWN_LINE_NUMBER),
function_type_metadata,
scope_line.unwrap_or(UNKNOWN_LINE_NUMBER),
flags,
spflags,
maybe_definition_llfn,
template_parameters,
None,
);
}
fn get_function_signature<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
) -> &'ll DIArray {
if cx.sess().opts.debuginfo == DebugInfo::Limited {
return create_DIArray(DIB(cx), &[]);
}
let mut signature = Vec::with_capacity(fn_abi.args.len() + 1);
// Return type -- llvm::DIBuilder wants this at index 0
signature.push(if fn_abi.ret.is_ignore() {
None
} else {
Some(type_metadata(cx, fn_abi.ret.layout.ty, rustc_span::DUMMY_SP))
});
// Arguments types
if cx.sess().target.options.is_like_msvc {
// FIXME(#42800):
// There is a bug in MSDIA that leads to a crash when it encounters
// a fixed-size array of `u8` or something zero-sized in a
// function-type (see #40477).
// As a workaround, we replace those fixed-size arrays with a
// pointer-type. So a function `fn foo(a: u8, b: [u8; 4])` would
// appear as `fn foo(a: u8, b: *const u8)` in debuginfo,
// and a function `fn bar(x: [(); 7])` as `fn bar(x: *const ())`.
// This transformed type is wrong, but these function types are
// already inaccurate due to ABI adjustments (see #42800).
signature.extend(fn_abi.args.iter().map(|arg| {
let t = arg.layout.ty;
let t = match t.kind() {
ty::Array(ct, _)
if (*ct == cx.tcx.types.u8) || cx.layout_of(ct).is_zst() =>
{
cx.tcx.mk_imm_ptr(ct)
}
_ => t,
};
Some(type_metadata(cx, t, rustc_span::DUMMY_SP))
}));
} else {
signature.extend(
fn_abi
.args
.iter()
.map(|arg| Some(type_metadata(cx, arg.layout.ty, rustc_span::DUMMY_SP))),
);
}
create_DIArray(DIB(cx), &signature[..])
}
fn get_template_parameters<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
generics: &ty::Generics,
substs: SubstsRef<'tcx>,
name_to_append_suffix_to: &mut String,
) -> &'ll DIArray {
if substs.types().next().is_none() {
return create_DIArray(DIB(cx), &[]);
}
name_to_append_suffix_to.push('<');
for (i, actual_type) in substs.types().enumerate() {
if i != 0 {
name_to_append_suffix_to.push(',');
}
let actual_type =
cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), actual_type);
// Add actual type name to <...> clause of function name
let actual_type_name = compute_debuginfo_type_name(cx.tcx(), actual_type, true);
name_to_append_suffix_to.push_str(&actual_type_name[..]);
}
name_to_append_suffix_to.push('>');
// Again, only create type information if full debuginfo is enabled
let template_params: Vec<_> = if cx.sess().opts.debuginfo == DebugInfo::Full {
let names = get_parameter_names(cx, generics);
substs
.iter()
.zip(names)
.filter_map(|(kind, name)| {
if let GenericArgKind::Type(ty) = kind.unpack() {
let actual_type =
cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
let actual_type_metadata =
type_metadata(cx, actual_type, rustc_span::DUMMY_SP);
let name = name.as_str();
Some(unsafe {
Some(llvm::LLVMRustDIBuilderCreateTemplateTypeParameter(
DIB(cx),
None,
name.as_ptr().cast(),
name.len(),
actual_type_metadata,
))
})
} else {
None
}
})
.collect()
} else {
vec![]
};
create_DIArray(DIB(cx), &template_params[..])
}
fn get_parameter_names(cx: &CodegenCx<'_, '_>, generics: &ty::Generics) -> Vec<Symbol> {
let mut names = generics
.parent
.map_or(vec![], |def_id| get_parameter_names(cx, cx.tcx.generics_of(def_id)));
names.extend(generics.params.iter().map(|param| param.name));
names
}
fn get_containing_scope<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
instance: Instance<'tcx>,
) -> &'ll DIScope {
// First, let's see if this is a method within an inherent impl. Because
// if yes, we want to make the result subroutine DIE a child of the
// subroutine's self-type.
let self_type = cx.tcx.impl_of_method(instance.def_id()).and_then(|impl_def_id| {
// If the method does *not* belong to a trait, proceed
if cx.tcx.trait_id_of_impl(impl_def_id).is_none() {
let impl_self_ty = cx.tcx.subst_and_normalize_erasing_regions(
instance.substs,
ty::ParamEnv::reveal_all(),
&cx.tcx.type_of(impl_def_id),
);
// Only "class" methods are generally understood by LLVM,
// so avoid methods on other types (e.g., `<*mut T>::null`).
match impl_self_ty.kind() {
ty::Adt(def, ..) if !def.is_box() => {
// Again, only create type information if full debuginfo is enabled
if cx.sess().opts.debuginfo == DebugInfo::Full
&& !impl_self_ty.needs_subst()
{
Some(type_metadata(cx, impl_self_ty, rustc_span::DUMMY_SP))
} else {
Some(namespace::item_namespace(cx, def.did))
}
}
_ => None,
}
} else {
// For trait method impls we still use the "parallel namespace"
// strategy
None
}
});
self_type.unwrap_or_else(|| {
namespace::item_namespace(
cx,
DefId {
krate: instance.def_id().krate,
index: cx
.tcx
.def_key(instance.def_id())
.parent
.expect("get_containing_scope: missing parent?"),
},
)
})
}*/
}
fn dbg_loc(&self, _scope: Self::DIScope, _inlined_at: Option<Self::DILocation>, _span: Span) -> Self::DILocation {
unimplemented!();
/*let DebugLoc { line, col, .. } = self.lookup_debug_loc(span.lo());
unsafe {
llvm::LLVMRustDIBuilderCreateDebugLocation(
utils::debug_context(self).llcontext,
line.unwrap_or(UNKNOWN_LINE_NUMBER),
col.unwrap_or(UNKNOWN_COLUMN_NUMBER),
scope,
inlined_at,
)
}*/
}
}

View File

@@ -0,0 +1,220 @@
use gccjit::{Function, FunctionType, GlobalKind, LValue, RValue, Type};
use rustc_codegen_ssa::traits::BaseTypeMethods;
use rustc_middle::ty::Ty;
use rustc_span::Symbol;
use rustc_target::abi::call::FnAbi;
use crate::abi::FnAbiGccExt;
use crate::context::{CodegenCx, unit_name};
use crate::intrinsic::llvm;
use crate::mangled_std_symbols::{ARGV_INIT_ARRAY, ARGV_INIT_WRAPPER};
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn get_or_insert_global(&self, name: &str, ty: Type<'gcc>, is_tls: bool, link_section: Option<Symbol>) -> RValue<'gcc> {
if self.globals.borrow().contains_key(name) {
let typ = self.globals.borrow().get(name).expect("global").get_type();
let global = self.context.new_global(None, GlobalKind::Imported, typ, name);
if is_tls {
global.set_tls_model(self.tls_model);
}
if let Some(link_section) = link_section {
global.set_link_section(&link_section.as_str());
}
global.get_address(None)
}
else {
self.declare_global(name, ty, is_tls, link_section)
}
}
pub fn declare_unnamed_global(&self, ty: Type<'gcc>) -> LValue<'gcc> {
let index = self.global_gen_sym_counter.get();
self.global_gen_sym_counter.set(index + 1);
let name = format!("global_{}_{}", index, unit_name(&self.codegen_unit));
self.context.new_global(None, GlobalKind::Exported, ty, &name)
}
pub fn declare_global_with_linkage(&self, name: &str, ty: Type<'gcc>, linkage: GlobalKind) -> RValue<'gcc> {
//debug!("declare_global_with_linkage(name={:?})", name);
let global = self.context.new_global(None, linkage, ty, name)
.get_address(None);
self.globals.borrow_mut().insert(name.to_string(), global);
// NOTE: global seems to only be global in a module. So save the name instead of the value
// to import it later.
self.global_names.borrow_mut().insert(global, name.to_string());
global
}
pub fn declare_func(&self, name: &str, return_type: Type<'gcc>, params: &[Type<'gcc>], variadic: bool) -> RValue<'gcc> {
self.linkage.set(FunctionType::Exported);
let func = declare_raw_fn(self, name, () /*llvm::CCallConv*/, return_type, params, variadic);
// FIXME: this is a wrong cast. That requires changing the compiler API.
unsafe { std::mem::transmute(func) }
}
pub fn declare_global(&self, name: &str, ty: Type<'gcc>, is_tls: bool, link_section: Option<Symbol>) -> RValue<'gcc> {
//debug!("declare_global(name={:?})", name);
// FIXME: correctly support global variable initialization.
if name.starts_with(ARGV_INIT_ARRAY) {
// NOTE: hack to avoid having to update the names in mangled_std_symbols: we save the
// name of the variable now to actually declare it later.
*self.init_argv_var.borrow_mut() = name.to_string();
let global = self.context.new_global(None, GlobalKind::Imported, ty, name);
if let Some(link_section) = link_section {
global.set_link_section(&link_section.as_str());
}
return global.get_address(None);
}
let global = self.context.new_global(None, GlobalKind::Exported, ty, name);
if is_tls {
global.set_tls_model(self.tls_model);
}
if let Some(link_section) = link_section {
global.set_link_section(&link_section.as_str());
}
let global = global.get_address(None);
self.globals.borrow_mut().insert(name.to_string(), global);
// NOTE: global seems to only be global in a module. So save the name instead of the value
// to import it later.
self.global_names.borrow_mut().insert(global, name.to_string());
global
}
pub fn declare_cfn(&self, name: &str, _fn_type: Type<'gcc>) -> RValue<'gcc> {
// TODO: use the fn_type parameter.
let const_string = self.context.new_type::<u8>().make_pointer().make_pointer();
let return_type = self.type_i32();
let variadic = false;
self.linkage.set(FunctionType::Exported);
let func = declare_raw_fn(self, name, () /*llvm::CCallConv*/, return_type, &[self.type_i32(), const_string], variadic);
// NOTE: it is needed to set the current_func here as well, because get_fn() is not called
// for the main function.
*self.current_func.borrow_mut() = Some(func);
// FIXME: this is a wrong cast. That requires changing the compiler API.
unsafe { std::mem::transmute(func) }
}
pub fn declare_fn(&self, name: &str, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> RValue<'gcc> {
// NOTE: hack to avoid having to update the names in mangled_std_symbols: we found the name
// of the variable earlier, so we declare it now.
// Since we don't correctly support initializers yet, we initialize this variable manually
// for now.
if name.starts_with(ARGV_INIT_WRAPPER) && !self.argv_initialized.get() {
let global_name = &*self.init_argv_var.borrow();
let return_type = self.type_void();
let params = [
self.context.new_parameter(None, self.int_type, "argc"),
self.context.new_parameter(None, self.u8_type.make_pointer().make_pointer(), "argv"),
self.context.new_parameter(None, self.u8_type.make_pointer().make_pointer(), "envp"),
];
let function = self.context.new_function(None, FunctionType::Extern, return_type, &params, name, false);
let initializer = function.get_address(None);
let param_types = [
self.int_type,
self.u8_type.make_pointer().make_pointer(),
self.u8_type.make_pointer().make_pointer(),
];
let ty = self.context.new_function_pointer_type(None, return_type, &param_types, false);
let global = self.context.new_global(None, GlobalKind::Exported, ty, global_name);
global.set_link_section(".init_array.00099");
global.global_set_initializer_value(initializer);
let global = global.get_address(None);
self.globals.borrow_mut().insert(global_name.to_string(), global);
// NOTE: global seems to only be global in a module. So save the name instead of the value
// to import it later.
self.global_names.borrow_mut().insert(global, global_name.to_string());
self.argv_initialized.set(true);
}
//debug!("declare_rust_fn(name={:?}, fn_abi={:?})", name, fn_abi);
let (return_type, params, variadic) = fn_abi.gcc_type(self);
let func = declare_raw_fn(self, name, () /*fn_abi.llvm_cconv()*/, return_type, &params, variadic);
//fn_abi.apply_attrs_llfn(self, func);
// FIXME: this is a wrong cast. That requires changing the compiler API.
unsafe { std::mem::transmute(func) }
}
pub fn define_global(&self, name: &str, ty: Type<'gcc>, is_tls: bool, link_section: Option<Symbol>) -> Option<RValue<'gcc>> {
Some(self.get_or_insert_global(name, ty, is_tls, link_section))
}
pub fn define_private_global(&self, ty: Type<'gcc>) -> RValue<'gcc> {
let global = self.declare_unnamed_global(ty);
global.get_address(None)
}
pub fn get_declared_value(&self, name: &str) -> Option<RValue<'gcc>> {
//debug!("get_declared_value(name={:?})", name);
// TODO: use a different field than globals, because this seems to return a function?
self.globals.borrow().get(name).cloned()
}
/*fn get_defined_value(&self, name: &str) -> Option<RValue<'gcc>> {
// TODO: gcc does not allow global initialization.
None
/*self.get_declared_value(name).and_then(|val| {
let declaration = unsafe { llvm::LLVMIsDeclaration(val) != 0 };
if !declaration { Some(val) } else { None }
})*/
}*/
}
/// Declare a function.
///
/// If theres a value with the same name already declared, the function will
/// update the declaration and return existing Value instead.
fn declare_raw_fn<'gcc>(cx: &CodegenCx<'gcc, '_>, name: &str, _callconv: () /*llvm::CallConv*/, return_type: Type<'gcc>, param_types: &[Type<'gcc>], variadic: bool) -> Function<'gcc> {
//debug!("declare_raw_fn(name={:?}, ty={:?})", name, ty);
/*let llfn = unsafe {
llvm::LLVMRustGetOrInsertFunction(cx.llmod, name.as_ptr().cast(), name.len(), ty)
};*/
if name.starts_with("llvm.") {
return llvm::intrinsic(name, cx);
}
let func =
if cx.functions.borrow().contains_key(name) {
*cx.functions.borrow().get(name).expect("function")
}
else {
let params: Vec<_> = param_types.into_iter().enumerate()
.map(|(index, param)| cx.context.new_parameter(None, *param, &format!("param{}", index))) // TODO: set name.
.collect();
let func = cx.context.new_function(None, cx.linkage.get(), return_type, &params, mangle_name(name), variadic);
cx.functions.borrow_mut().insert(name.to_string(), func);
func
};
//llvm::SetFunctionCallConv(llfn, callconv); // TODO
// Function addresses in Rust are never significant, allowing functions to
// be merged.
//llvm::SetUnnamedAddress(llfn, llvm::UnnamedAddr::Global); // TODO
/*if cx.tcx.sess.opts.cg.no_redzone.unwrap_or(cx.tcx.sess.target.target.options.disable_redzone) {
llvm::Attribute::NoRedZone.apply_llfn(Function, llfn);
}*/
//attributes::default_optimisation_attrs(cx.tcx.sess, llfn);
//attributes::non_lazy_bind(cx.sess(), llfn);
// FIXME: invalid cast.
// TODO: is this line useful?
//cx.globals.borrow_mut().insert(name.to_string(), unsafe { std::mem::transmute(func) });
func
}
// FIXME: this is a hack because libgccjit currently only supports alpha, num and _.
// Unsupported characters: `$` and `.`.
pub fn mangle_name(name: &str) -> String {
name.replace(|char: char| {
if !char.is_alphanumeric() && char != '_' {
debug_assert!("$.".contains(char), "Unsupported char in function name: {}", char);
true
}
else {
false
}
}, "_")
}

View File

@@ -0,0 +1,26 @@
use gccjit::Function;
use crate::context::CodegenCx;
pub fn intrinsic<'gcc, 'tcx>(name: &str, cx: &CodegenCx<'gcc, 'tcx>) -> Function<'gcc> {
let _gcc_name =
match name {
"llvm.x86.xgetbv" => {
let gcc_name = "__builtin_trap";
let func = cx.context.get_builtin_function(gcc_name);
cx.functions.borrow_mut().insert(gcc_name.to_string(), func);
return func;
},
// TODO: this doc specifies the equivalent GCC builtins: http://huonw.github.io/llvmint/llvmint/x86/index.html
"llvm.x86.sse2.cmp.pd" => "__builtin_ia32_cmppd",
"llvm.x86.sse2.movmsk.pd" => "__builtin_ia32_movmskpd",
"llvm.x86.sse2.pmovmskb.128" => "__builtin_ia32_pmovmskb128",
_ => unimplemented!("unsupported LLVM intrinsic {}", name)
};
println!("Get target builtin");
unimplemented!();
/*let func = cx.context.get_target_builtin_function(gcc_name);
cx.functions.borrow_mut().insert(gcc_name.to_string(), func);
func*/
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,342 @@
/*
* TODO: support #[inline] attributes.
* TODO: support LTO.
*
* TODO: remove the local gccjit LD_LIBRARY_PATH in config.sh.
* TODO: remove the object dependency.
* TODO: remove the patches.
*/
#![feature(rustc_private, decl_macro, associated_type_bounds, never_type, trusted_len)]
#![allow(broken_intra_doc_links)]
#![recursion_limit="256"]
#![warn(rust_2018_idioms)]
#![warn(unused_lifetimes)]
/*extern crate flate2;
extern crate libc;*/
extern crate rustc_ast;
extern crate rustc_codegen_ssa;
extern crate rustc_data_structures;
extern crate rustc_errors;
//extern crate rustc_fs_util;
extern crate rustc_hir;
extern crate rustc_metadata;
extern crate rustc_middle;
extern crate rustc_mir;
extern crate rustc_session;
extern crate rustc_span;
extern crate rustc_symbol_mangling;
extern crate rustc_target;
extern crate snap;
// This prevents duplicating functions and statics that are already part of the host rustc process.
#[allow(unused_extern_crates)]
extern crate rustc_driver;
mod abi;
mod allocator;
mod archive;
mod asm;
mod back;
mod base;
mod builder;
mod callee;
mod common;
mod consts;
mod context;
mod coverageinfo;
mod debuginfo;
mod declare;
mod intrinsic;
mod mangled_std_symbols;
mod mono_item;
mod type_;
mod type_of;
mod va_arg;
use std::any::Any;
use std::sync::Arc;
use gccjit::{Block, Context, FunctionType, OptimizationLevel};
use rustc_ast::expand::allocator::AllocatorKind;
use rustc_codegen_ssa::{CodegenResults, CompiledModule, ModuleCodegen};
use rustc_codegen_ssa::base::codegen_crate;
use rustc_codegen_ssa::back::write::{CodegenContext, FatLTOInput, ModuleConfig, TargetMachineFactoryFn};
use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule};
use rustc_codegen_ssa::target_features::supported_target_features;
use rustc_codegen_ssa::traits::{CodegenBackend, ExtraBackendMethods, ModuleBufferMethods, ThinBufferMethods, WriteBackendMethods};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{ErrorReported, Handler};
use rustc_middle::dep_graph::{WorkProduct, WorkProductId};
use rustc_middle::middle::cstore::EncodedMetadata;
use rustc_middle::ty::TyCtxt;
use rustc_session::config::{CrateType, Lto, OptLevel, OutputFilenames};
use rustc_session::Session;
use rustc_span::Symbol;
use rustc_span::fatal_error::FatalError;
use crate::context::unit_name;
pub struct PrintOnPanic<F: Fn() -> String>(pub F);
impl<F: Fn() -> String> Drop for PrintOnPanic<F> {
fn drop(&mut self) {
if ::std::thread::panicking() {
println!("{}", (self.0)());
}
}
}
#[derive(Clone)]
pub struct GccCodegenBackend;
impl CodegenBackend for GccCodegenBackend {
fn init(&self, sess: &Session) {
if sess.lto() != Lto::No {
sess.warn("LTO is not supported. You may get a linker error.");
}
}
fn codegen_crate<'tcx>(&self, tcx: TyCtxt<'tcx>, metadata: EncodedMetadata, need_metadata_module: bool) -> Box<dyn Any> {
let target_cpu = target_cpu(tcx.sess);
let res = codegen_crate(self.clone(), tcx, target_cpu.to_string(), metadata, need_metadata_module);
rustc_symbol_mangling::test::report_symbol_names(tcx);
Box::new(res)
}
fn join_codegen(&self, ongoing_codegen: Box<dyn Any>, sess: &Session) -> Result<(CodegenResults, FxHashMap<WorkProductId, WorkProduct>), ErrorReported> {
let (codegen_results, work_products) = ongoing_codegen
.downcast::<rustc_codegen_ssa::back::write::OngoingCodegen<GccCodegenBackend>>()
.expect("Expected GccCodegenBackend's OngoingCodegen, found Box<Any>")
.join(sess);
Ok((codegen_results, work_products))
}
fn link(&self, sess: &Session, mut codegen_results: CodegenResults, outputs: &OutputFilenames) -> Result<(), ErrorReported> {
use rustc_codegen_ssa::back::link::link_binary;
if let Some(symbols) = codegen_results.crate_info.exported_symbols.get_mut(&CrateType::Dylib) {
// TODO: remove when global initializer work without calling a function at runtime.
// HACK: since this codegen add some symbols (e.g. __gccGlobalCrateInit) and the UI
// tests load libstd.so as a dynamic library, and rustc use a version-script to specify
// the symbols visibility, we add * to export all symbols.
// It seems other symbols from libstd/libcore are causing some issues here as well.
symbols.push("*".to_string());
}
link_binary::<crate::archive::ArArchiveBuilder<'_>>(
sess,
&codegen_results,
outputs,
)
}
fn target_features(&self, sess: &Session) -> Vec<Symbol> {
target_features(sess)
}
}
impl ExtraBackendMethods for GccCodegenBackend {
fn new_metadata<'tcx>(&self, _tcx: TyCtxt<'tcx>, _mod_name: &str) -> Self::Module {
GccContext {
context: Context::default(),
}
}
fn write_compressed_metadata<'tcx>(&self, tcx: TyCtxt<'tcx>, metadata: &EncodedMetadata, gcc_module: &mut Self::Module) {
base::write_compressed_metadata(tcx, metadata, gcc_module)
}
fn codegen_allocator<'tcx>(&self, tcx: TyCtxt<'tcx>, mods: &mut Self::Module, kind: AllocatorKind, has_alloc_error_handler: bool) {
unsafe { allocator::codegen(tcx, mods, kind, has_alloc_error_handler) }
}
fn compile_codegen_unit<'tcx>(&self, tcx: TyCtxt<'tcx>, cgu_name: Symbol) -> (ModuleCodegen<Self::Module>, u64) {
base::compile_codegen_unit(tcx, cgu_name)
}
fn target_machine_factory(&self, _sess: &Session, _opt_level: OptLevel) -> TargetMachineFactoryFn<Self> {
// TODO: set opt level.
Arc::new(|_| {
Ok(())
})
}
fn target_cpu<'b>(&self, _sess: &'b Session) -> &'b str {
unimplemented!();
}
fn tune_cpu<'b>(&self, _sess: &'b Session) -> Option<&'b str> {
None
// TODO
//llvm_util::tune_cpu(sess)
}
}
pub struct ModuleBuffer;
impl ModuleBufferMethods for ModuleBuffer {
fn data(&self) -> &[u8] {
unimplemented!();
}
}
pub struct ThinBuffer;
impl ThinBufferMethods for ThinBuffer {
fn data(&self) -> &[u8] {
unimplemented!();
}
}
pub struct GccContext {
context: Context<'static>,
}
unsafe impl Send for GccContext {}
// FIXME: that shouldn't be Sync. Parallel compilation is currently disabled with "-Zno-parallel-llvm". Try to disable it here.
unsafe impl Sync for GccContext {}
impl WriteBackendMethods for GccCodegenBackend {
type Module = GccContext;
type TargetMachine = ();
type ModuleBuffer = ModuleBuffer;
type Context = ();
type ThinData = ();
type ThinBuffer = ThinBuffer;
fn run_fat_lto(_cgcx: &CodegenContext<Self>, mut modules: Vec<FatLTOInput<Self>>, _cached_modules: Vec<(SerializedModule<Self::ModuleBuffer>, WorkProduct)>) -> Result<LtoModuleCodegen<Self>, FatalError> {
// TODO: implement LTO by sending -flto to libgccjit and adding the appropriate gcc linker plugins.
// NOTE: implemented elsewhere.
let module =
match modules.remove(0) {
FatLTOInput::InMemory(module) => module,
FatLTOInput::Serialized { .. } => {
unimplemented!();
/*info!("pushing serialized module {:?}", name);
let buffer = SerializedModule::Local(buffer);
serialized_modules.push((buffer, CString::new(name).unwrap()));*/
}
};
Ok(LtoModuleCodegen::Fat { module: Some(module), _serialized_bitcode: vec![] })
}
fn run_thin_lto(_cgcx: &CodegenContext<Self>, _modules: Vec<(String, Self::ThinBuffer)>, _cached_modules: Vec<(SerializedModule<Self::ModuleBuffer>, WorkProduct)>) -> Result<(Vec<LtoModuleCodegen<Self>>, Vec<WorkProduct>), FatalError> {
unimplemented!();
}
fn print_pass_timings(&self) {
unimplemented!();
}
unsafe fn optimize(_cgcx: &CodegenContext<Self>, _diag_handler: &Handler, module: &ModuleCodegen<Self::Module>, config: &ModuleConfig) -> Result<(), FatalError> {
//if cgcx.lto == Lto::Fat {
//module.module_llvm.context.add_driver_option("-flto");
//}
module.module_llvm.context.set_optimization_level(to_gcc_opt_level(config.opt_level));
Ok(())
}
unsafe fn optimize_thin(_cgcx: &CodegenContext<Self>, _thin: &mut ThinModule<Self>) -> Result<ModuleCodegen<Self::Module>, FatalError> {
unimplemented!();
}
unsafe fn codegen(cgcx: &CodegenContext<Self>, diag_handler: &Handler, module: ModuleCodegen<Self::Module>, config: &ModuleConfig) -> Result<CompiledModule, FatalError> {
back::write::codegen(cgcx, diag_handler, module, config)
}
fn prepare_thin(_module: ModuleCodegen<Self::Module>) -> (String, Self::ThinBuffer) {
unimplemented!();
}
fn serialize_module(_module: ModuleCodegen<Self::Module>) -> (String, Self::ModuleBuffer) {
unimplemented!();
}
fn run_lto_pass_manager(_cgcx: &CodegenContext<Self>, _module: &ModuleCodegen<Self::Module>, _config: &ModuleConfig, _thin: bool) -> Result<(), FatalError> {
// TODO
Ok(())
}
fn run_link(cgcx: &CodegenContext<Self>, diag_handler: &Handler, modules: Vec<ModuleCodegen<Self::Module>>) -> Result<ModuleCodegen<Self::Module>, FatalError> {
back::write::link(cgcx, diag_handler, modules)
}
}
/*fn target_triple(sess: &Session) -> target_lexicon::Triple {
sess.target.llvm_target.parse().unwrap()
}*/
/// This is the entrypoint for a hot plugged rustc_codegen_gccjit
#[no_mangle]
pub fn __rustc_codegen_backend() -> Box<dyn CodegenBackend> {
Box::new(GccCodegenBackend)
}
fn to_gcc_opt_level(optlevel: Option<OptLevel>) -> OptimizationLevel {
match optlevel {
None => OptimizationLevel::None,
Some(level) => {
match level {
OptLevel::No => OptimizationLevel::None,
OptLevel::Less => OptimizationLevel::Limited,
OptLevel::Default => OptimizationLevel::Standard,
OptLevel::Aggressive => OptimizationLevel::Aggressive,
OptLevel::Size | OptLevel::SizeMin => OptimizationLevel::Limited,
}
},
}
}
fn create_function_calling_initializers<'gcc, 'tcx>(tcx: TyCtxt<'tcx>, context: &Context<'gcc>, block: Block<'gcc>) {
let codegen_units = tcx.collect_and_partition_mono_items(()).1;
for codegen_unit in codegen_units {
let codegen_init_func = context.new_function(None, FunctionType::Extern, context.new_type::<()>(), &[],
&format!("__gccGlobalInit{}", unit_name(&codegen_unit)), false);
block.add_eval(None, context.new_call(None, codegen_init_func, &[]));
}
}
fn handle_native(name: &str) -> &str {
if name != "native" {
return name;
}
unimplemented!();
/*unsafe {
let mut len = 0;
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap()
}*/
}
pub fn target_cpu(sess: &Session) -> &str {
let name = sess.opts.cg.target_cpu.as_ref().unwrap_or(&sess.target.cpu);
handle_native(name)
}
pub fn target_features(sess: &Session) -> Vec<Symbol> {
supported_target_features(sess)
.iter()
.filter_map(
|&(feature, gate)| {
if sess.is_nightly_build() || gate.is_none() { Some(feature) } else { None }
},
)
.filter(|_feature| {
/*if feature.starts_with("sse") {
return true;
}*/
// TODO: implement a way to get enabled feature in libgccjit.
//println!("Feature: {}", feature);
/*let llvm_feature = to_llvm_feature(sess, feature);
let cstr = CString::new(llvm_feature).unwrap();
unsafe { llvm::LLVMRustHasFeature(target_machine, cstr.as_ptr()) }*/
false
})
.map(|feature| Symbol::intern(feature))
.collect()
}

View File

@@ -0,0 +1,4 @@
pub const ARGV_INIT_ARRAY: &str = "_ZN3std3sys4unix4args3imp15ARGV_INIT_ARRAY";
pub const ARGV_INIT_WRAPPER: &str = "_ZN3std3sys4unix4args3imp15ARGV_INIT_ARRAY12init_wrapper";
pub const ARGC: &str = "_ZN3std3sys4unix4args3imp4ARGC";
pub const ARGV: &str = "_ZN3std3sys4unix4args3imp4ARGV";

View File

@@ -0,0 +1,59 @@
use rustc_codegen_ssa::traits::PreDefineMethods;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::mono::{Linkage, Visibility};
use rustc_middle::ty::{self, Instance, TypeFoldable};
use rustc_middle::ty::layout::FnAbiExt;
use rustc_span::def_id::DefId;
use rustc_target::abi::LayoutOf;
use rustc_target::abi::call::FnAbi;
use crate::base;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> PreDefineMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn predefine_static(&self, def_id: DefId, _linkage: Linkage, _visibility: Visibility, symbol_name: &str) {
let attrs = self.tcx.codegen_fn_attrs(def_id);
let instance = Instance::mono(self.tcx, def_id);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let gcc_type = self.layout_of(ty).gcc_type(self, true);
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let global = self.define_global(symbol_name, gcc_type, is_tls, attrs.link_section).unwrap_or_else(|| {
self.sess().span_fatal(
self.tcx.def_span(def_id),
&format!("symbol `{}` is already defined", symbol_name),
)
});
// TODO
/*unsafe {
llvm::LLVMRustSetLinkage(global, base::linkage_to_llvm(linkage));
llvm::LLVMRustSetVisibility(global, base::visibility_to_llvm(visibility));
}*/
self.instances.borrow_mut().insert(instance, global);
}
fn predefine_fn(&self, instance: Instance<'tcx>, linkage: Linkage, _visibility: Visibility, symbol_name: &str) {
assert!(!instance.substs.needs_infer() && !instance.substs.has_param_types_or_consts());
let fn_abi = FnAbi::of_instance(self, instance, &[]);
self.linkage.set(base::linkage_to_gcc(linkage));
let _decl = self.declare_fn(symbol_name, &fn_abi);
//let attrs = self.tcx.codegen_fn_attrs(instance.def_id());
// TODO: call set_link_section() to allow initializing argc/argv.
//base::set_link_section(decl, &attrs);
/*if linkage == Linkage::LinkOnceODR || linkage == Linkage::WeakODR {
llvm::SetUniqueComdat(self.llmod, decl);
}*/
//debug!("predefine_fn: instance = {:?}", instance);
// TODO: use inline attribute from there in linkage.set() above:
//attributes::from_fn_attrs(self, decl, instance);
//self.instances.borrow_mut().insert(instance, decl);
}
}

View File

@@ -0,0 +1,355 @@
use std::convert::TryInto;
use gccjit::{RValue, Struct, Type};
use rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods};
use rustc_codegen_ssa::common::TypeKind;
use rustc_middle::bug;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_target::abi::{AddressSpace, Align, Integer, Size};
use crate::common::TypeReflection;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn type_ix(&self, num_bits: u64) -> Type<'gcc> {
// gcc only supports 1, 2, 4 or 8-byte integers.
let bytes = (num_bits / 8).next_power_of_two() as i32;
match bytes {
1 => self.i8_type,
2 => self.i16_type,
4 => self.i32_type,
8 => self.i64_type,
16 => self.i128_type,
_ => panic!("unexpected num_bits: {}", num_bits),
}
/*
let bytes = (num_bits / 8).next_power_of_two() as i32;
println!("num_bits: {}, bytes: {}", num_bits, bytes);
self.context.new_int_type(bytes, true) // TODO: check if it is indeed a signed integer.
*/
}
/*pub fn type_bool(&self) -> Type<'gcc> {
self.bool_type
}*/
pub fn type_void(&self) -> Type<'gcc> {
self.context.new_type::<()>()
}
pub fn type_size_t(&self) -> Type<'gcc> {
self.context.new_type::<usize>()
}
pub fn type_u8(&self) -> Type<'gcc> {
self.u8_type
}
pub fn type_u16(&self) -> Type<'gcc> {
self.u16_type
}
pub fn type_u32(&self) -> Type<'gcc> {
self.u32_type
}
pub fn type_u64(&self) -> Type<'gcc> {
self.u64_type
}
pub fn type_u128(&self) -> Type<'gcc> {
self.u128_type
}
pub fn type_pointee_for_align(&self, align: Align) -> Type<'gcc> {
// FIXME(eddyb) We could find a better approximation if ity.align < align.
let ity = Integer::approximate_align(self, align);
self.type_from_integer(ity)
}
/*pub fn type_int_from_ty(&self, t: ty::IntTy) -> Type<'gcc> {
match t {
ty::IntTy::Isize => self.type_isize(),
ty::IntTy::I8 => self.type_i8(),
ty::IntTy::I16 => self.type_i16(),
ty::IntTy::I32 => self.type_i32(),
ty::IntTy::I64 => self.type_i64(),
ty::IntTy::I128 => self.type_i128(),
}
}
pub fn type_uint_from_ty(&self, t: ty::UintTy) -> Type<'gcc> {
match t {
ty::UintTy::Usize => self.type_isize(),
ty::UintTy::U8 => self.type_i8(),
ty::UintTy::U16 => self.type_i16(),
ty::UintTy::U32 => self.type_i32(),
ty::UintTy::U64 => self.type_i64(),
ty::UintTy::U128 => self.type_i128(),
}
}
pub fn type_float_from_ty(&self, t: ty::FloatTy) -> Type<'gcc> {
match t {
ty::FloatTy::F32 => self.type_f32(),
ty::FloatTy::F64 => self.type_f64(),
}
}
pub fn type_vector(&self, ty: Type<'gcc>, len: u64) -> Type<'gcc> {
self.context.new_vector_type(ty, len)
}*/
}
impl<'gcc, 'tcx> BaseTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn type_i1(&self) -> Type<'gcc> {
self.bool_type
}
fn type_i8(&self) -> Type<'gcc> {
self.i8_type
}
fn type_i16(&self) -> Type<'gcc> {
self.i16_type
}
fn type_i32(&self) -> Type<'gcc> {
self.i32_type
}
fn type_i64(&self) -> Type<'gcc> {
self.i64_type
}
fn type_i128(&self) -> Type<'gcc> {
self.i128_type
}
fn type_isize(&self) -> Type<'gcc> {
self.isize_type
}
fn type_f32(&self) -> Type<'gcc> {
self.context.new_type::<f32>()
}
fn type_f64(&self) -> Type<'gcc> {
self.context.new_type::<f64>()
}
fn type_func(&self, params: &[Type<'gcc>], return_type: Type<'gcc>) -> Type<'gcc> {
self.context.new_function_pointer_type(None, return_type, params, false)
}
fn type_struct(&self, fields: &[Type<'gcc>], _packed: bool) -> Type<'gcc> {
let types = fields.to_vec();
if let Some(typ) = self.struct_types.borrow().get(fields) {
return typ.clone();
}
let fields: Vec<_> = fields.iter().enumerate()
.map(|(index, field)| self.context.new_field(None, *field, &format!("field{}_TODO", index)))
.collect();
// TODO: use packed.
//let name = types.iter().map(|typ| format!("{:?}", typ)).collect::<Vec<_>>().join("_");
//let typ = self.context.new_struct_type(None, format!("struct{}", name), &fields).as_type();
let typ = self.context.new_struct_type(None, "struct", &fields).as_type();
self.struct_types.borrow_mut().insert(types, typ);
typ
}
fn type_kind(&self, typ: Type<'gcc>) -> TypeKind {
if typ.is_integral() {
TypeKind::Integer
}
else if typ.is_vector().is_some() {
TypeKind::Vector
}
else {
// TODO
TypeKind::Void
}
}
fn type_ptr_to(&self, ty: Type<'gcc>) -> Type<'gcc> {
// TODO
/*assert_ne!(self.type_kind(ty), TypeKind::Function,
"don't call ptr_to on function types, use ptr_to_gcc_type on FnAbi instead"
);*/
ty.make_pointer()
}
fn type_ptr_to_ext(&self, ty: Type<'gcc>, _address_space: AddressSpace) -> Type<'gcc> {
// TODO: use address_space
ty.make_pointer()
}
fn element_type(&self, ty: Type<'gcc>) -> Type<'gcc> {
if let Some(typ) = ty.is_array() {
typ
}
else if let Some(vector_type) = ty.is_vector() {
vector_type.get_element_type()
}
else if let Some(typ) = ty.get_pointee() {
typ
}
else {
unreachable!()
}
}
fn vector_length(&self, _ty: Type<'gcc>) -> usize {
unimplemented!();
//unsafe { llvm::LLVMGetVectorSize(ty) as usize }
}
fn float_width(&self, typ: Type<'gcc>) -> usize {
let f32 = self.context.new_type::<f32>();
let f64 = self.context.new_type::<f64>();
if typ == f32 {
32
}
else if typ == f64 {
64
}
else {
panic!("Cannot get width of float type {:?}", typ);
}
// TODO: support other sizes.
/*match self.type_kind(ty) {
TypeKind::Float => 32,
TypeKind::Double => 64,
TypeKind::X86_FP80 => 80,
TypeKind::FP128 | TypeKind::PPC_FP128 => 128,
_ => bug!("llvm_float_width called on a non-float type"),
}*/
}
fn int_width(&self, typ: Type<'gcc>) -> u64 {
if typ.is_i8(self) || typ.is_u8(self) {
8
}
else if typ.is_i16(self) || typ.is_u16(self) {
16
}
else if typ.is_i32(self) || typ.is_u32(self) {
32
}
else if typ.is_i64(self) || typ.is_u64(self) {
64
}
else if typ.is_i128(self) || typ.is_u128(self) {
128
}
else {
panic!("Cannot get width of int type {:?}", typ);
}
}
fn val_ty(&self, value: RValue<'gcc>) -> Type<'gcc> {
value.get_type()
}
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn type_padding_filler(&self, size: Size, align: Align) -> Type<'gcc> {
let unit = Integer::approximate_align(self, align);
let size = size.bytes();
let unit_size = unit.size().bytes();
assert_eq!(size % unit_size, 0);
self.type_array(self.type_from_integer(unit), size / unit_size)
}
pub fn set_struct_body(&self, typ: Struct<'gcc>, fields: &[Type<'gcc>], _packed: bool) {
// TODO: use packed.
let fields: Vec<_> = fields.iter().enumerate()
.map(|(index, field)| self.context.new_field(None, *field, &format!("field_{}", index)))
.collect();
typ.set_fields(None, &fields);
}
/*fn type_struct(&self, fields: &[Type<'gcc>], packed: bool) -> Type<'gcc> {
// TODO: use packed.
let fields: Vec<_> = fields.iter().enumerate()
.map(|(index, field)| self.context.new_field(None, *field, &format!("field_{}", index)))
.collect();
return self.context.new_struct_type(None, "unnamedStruct", &fields).as_type();
}*/
pub fn type_named_struct(&self, name: &str) -> Struct<'gcc> {
self.context.new_opaque_struct_type(None, name)
}
pub fn type_array(&self, ty: Type<'gcc>, mut len: u64) -> Type<'gcc> {
if let Some(struct_type) = ty.is_struct() {
if struct_type.get_field_count() == 0 {
// NOTE: since gccjit only supports i32 for the array size and libcore's tests uses a
// size of usize::MAX in test_binary_search, we workaround this by setting the size to
// zero for ZSTs.
// FIXME: fix gccjit API.
len = 0;
}
}
let len: i32 = len.try_into().expect("array len");
self.context.new_array_type(None, ty, len)
}
}
pub fn struct_fields<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>) -> (Vec<Type<'gcc>>, bool) {
//debug!("struct_fields: {:#?}", layout);
let field_count = layout.fields.count();
let mut packed = false;
let mut offset = Size::ZERO;
let mut prev_effective_align = layout.align.abi;
let mut result: Vec<_> = Vec::with_capacity(1 + field_count * 2);
for i in layout.fields.index_by_increasing_offset() {
let target_offset = layout.fields.offset(i as usize);
let field = layout.field(cx, i);
let effective_field_align =
layout.align.abi.min(field.align.abi).restrict_for_offset(target_offset);
packed |= effective_field_align < field.align.abi;
/*debug!(
"struct_fields: {}: {:?} offset: {:?} target_offset: {:?} \
effective_field_align: {}",
i,
field,
offset,
target_offset,
effective_field_align.bytes()
);*/
assert!(target_offset >= offset);
let padding = target_offset - offset;
let padding_align = prev_effective_align.min(effective_field_align);
assert_eq!(offset.align_to(padding_align) + padding, target_offset);
result.push(cx.type_padding_filler(padding, padding_align));
//debug!(" padding before: {:?}", padding);
result.push(field.gcc_type(cx, !field.ty.is_any_ptr())); // FIXME: might need to check if the type is inside another, like Box<Type>.
offset = target_offset + field.size;
prev_effective_align = effective_field_align;
}
if !layout.is_unsized() && field_count > 0 {
if offset > layout.size {
bug!("layout: {:#?} stride: {:?} offset: {:?}", layout, layout.size, offset);
}
let padding = layout.size - offset;
let padding_align = prev_effective_align;
assert_eq!(offset.align_to(padding_align) + padding, layout.size);
/*debug!(
"struct_fields: pad_bytes: {:?} offset: {:?} stride: {:?}",
padding, offset, layout.size
);*/
result.push(cx.type_padding_filler(padding, padding_align));
assert_eq!(result.len(), 1 + field_count * 2);
} else {
//debug!("struct_fields: offset: {:?} stride: {:?}", offset, layout.size);
}
(result, packed)
}

View File

@@ -0,0 +1,366 @@
use std::fmt::Write;
use gccjit::{Struct, Type};
use crate::rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods, LayoutTypeMethods};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TypeFoldable};
use rustc_middle::ty::layout::{FnAbiExt, TyAndLayout};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_target::abi::{self, Abi, F32, F64, FieldsShape, Int, Integer, LayoutOf, Pointer, PointeeInfo, Size, TyAndLayoutMethods, Variants};
use rustc_target::abi::call::{CastTarget, FnAbi, Reg};
use crate::abi::{FnAbiGccExt, GccType};
use crate::context::CodegenCx;
use crate::type_::struct_fields;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
fn type_from_unsigned_integer(&self, i: Integer) -> Type<'gcc> {
use Integer::*;
match i {
I8 => self.type_u8(),
I16 => self.type_u16(),
I32 => self.type_u32(),
I64 => self.type_u64(),
I128 => self.type_u128(),
}
}
}
pub fn uncached_gcc_type<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>, defer: &mut Option<(Struct<'gcc>, TyAndLayout<'tcx>)>) -> Type<'gcc> {
match layout.abi {
Abi::Scalar(_) => bug!("handled elsewhere"),
Abi::Vector { ref element, count } => {
let element = layout.scalar_gcc_type_at(cx, element, Size::ZERO);
return cx.context.new_vector_type(element, count);
},
Abi::ScalarPair(..) => {
return cx.type_struct(
&[
layout.scalar_pair_element_gcc_type(cx, 0, false),
layout.scalar_pair_element_gcc_type(cx, 1, false),
],
false,
);
}
Abi::Uninhabited | Abi::Aggregate { .. } => {}
}
let name = match layout.ty.kind() {
// FIXME(eddyb) producing readable type names for trait objects can result
// in problematically distinct types due to HRTB and subtyping (see #47638).
// ty::Dynamic(..) |
ty::Adt(..) | ty::Closure(..) | ty::Foreign(..) | ty::Generator(..) | ty::Str
if !cx.sess().fewer_names() =>
{
let mut name = with_no_trimmed_paths(|| layout.ty.to_string());
if let (&ty::Adt(def, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
if def.is_enum() && !def.variants.is_empty() {
write!(&mut name, "::{}", def.variants[index].ident).unwrap();
}
}
if let (&ty::Generator(_, _, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
write!(&mut name, "::{}", ty::GeneratorSubsts::variant_name(index)).unwrap();
}
Some(name)
}
ty::Adt(..) => {
// If `Some` is returned then a named struct is created in LLVM. Name collisions are
// avoided by LLVM (with increasing suffixes). If rustc doesn't generate names then that
// can improve perf.
// FIXME: I don't think that's true for libgccjit.
Some(String::new())
}
_ => None,
};
match layout.fields {
FieldsShape::Primitive | FieldsShape::Union(_) => {
let fill = cx.type_padding_filler(layout.size, layout.align.abi);
let packed = false;
match name {
None => cx.type_struct(&[fill], packed),
Some(ref name) => {
let gcc_type = cx.type_named_struct(name);
cx.set_struct_body(gcc_type, &[fill], packed);
gcc_type.as_type()
},
}
}
FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).gcc_type(cx, true), count),
FieldsShape::Arbitrary { .. } =>
match name {
None => {
let (gcc_fields, packed) = struct_fields(cx, layout);
cx.type_struct(&gcc_fields, packed)
},
Some(ref name) => {
let gcc_type = cx.type_named_struct(name);
*defer = Some((gcc_type, layout));
gcc_type.as_type()
},
},
}
}
pub trait LayoutGccExt<'tcx> {
fn is_gcc_immediate(&self) -> bool;
fn is_gcc_scalar_pair(&self) -> bool;
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc>;
fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc>;
fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc>;
fn gcc_field_index(&self, index: usize) -> u64;
fn pointee_info_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, offset: Size) -> Option<PointeeInfo>;
}
impl<'tcx> LayoutGccExt<'tcx> for TyAndLayout<'tcx> {
fn is_gcc_immediate(&self) -> bool {
match self.abi {
Abi::Scalar(_) | Abi::Vector { .. } => true,
Abi::ScalarPair(..) => false,
Abi::Uninhabited | Abi::Aggregate { .. } => self.is_zst(),
}
}
fn is_gcc_scalar_pair(&self) -> bool {
match self.abi {
Abi::ScalarPair(..) => true,
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
}
}
/// Gets the GCC type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
/// The pointee type of the pointer in `PlaceRef` is always this type.
/// For sized types, it is also the right LLVM type for an `alloca`
/// containing a value of that type, and most immediates (except `bool`).
/// Unsized types, however, are represented by a "minimal unit", e.g.
/// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
/// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
/// If the type is an unsized struct, the regular layout is generated,
/// with the inner-most trailing unsized field using the "minimal unit"
/// of that field's type - this is useful for taking the address of
/// that field and ensuring the struct has the right alignment.
fn gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, set_fields: bool) -> Type<'gcc> {
if let Abi::Scalar(ref scalar) = self.abi {
// Use a different cache for scalars because pointers to DSTs
// can be either fat or thin (data pointers of fat pointers).
if let Some(&ty) = cx.scalar_types.borrow().get(&self.ty) {
return ty;
}
let ty =
match *self.ty.kind() {
ty::Ref(_, ty, _) | ty::RawPtr(ty::TypeAndMut { ty, .. }) => {
cx.type_ptr_to(cx.layout_of(ty).gcc_type(cx, set_fields))
}
ty::Adt(def, _) if def.is_box() => {
cx.type_ptr_to(cx.layout_of(self.ty.boxed_ty()).gcc_type(cx, true))
}
ty::FnPtr(sig) => cx.fn_ptr_backend_type(&FnAbi::of_fn_ptr(cx, sig, &[])),
_ => self.scalar_gcc_type_at(cx, scalar, Size::ZERO),
};
cx.scalar_types.borrow_mut().insert(self.ty, ty);
return ty;
}
// Check the cache.
let variant_index =
match self.variants {
Variants::Single { index } => Some(index),
_ => None,
};
let cached_type = cx.types.borrow().get(&(self.ty, variant_index)).cloned();
if let Some(ty) = cached_type {
let type_to_set_fields = cx.types_with_fields_to_set.borrow_mut().remove(&ty);
if let Some((struct_type, layout)) = type_to_set_fields {
// Since we might be trying to generate a type containing another type which is not
// completely generated yet, we deferred setting the fields until now.
let (fields, packed) = struct_fields(cx, layout);
cx.set_struct_body(struct_type, &fields, packed);
}
return ty;
}
//debug!("gcc_type({:#?})", self);
assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);
// Make sure lifetimes are erased, to avoid generating distinct LLVM
// types for Rust types that only differ in the choice of lifetimes.
let normal_ty = cx.tcx.erase_regions(self.ty);
let mut defer = None;
let ty =
if self.ty != normal_ty {
let mut layout = cx.layout_of(normal_ty);
if let Some(v) = variant_index {
layout = layout.for_variant(cx, v);
}
layout.gcc_type(cx, true)
}
else {
uncached_gcc_type(cx, *self, &mut defer)
};
//debug!("--> mapped {:#?} to ty={:?}", self, ty);
cx.types.borrow_mut().insert((self.ty, variant_index), ty);
if let Some((ty, layout)) = defer {
//TODO: do we still need this conditions and the set_fields parameter?
//if set_fields {
let (fields, packed) = struct_fields(cx, layout);
cx.set_struct_body(ty, &fields, packed);
/*}
else {
// Since we might be trying to generate a type containing another type which is not
// completely generated yet, we don't set the fields right now, but we save the
// type to set the fields later.
cx.types_with_fields_to_set.borrow_mut().insert(ty.as_type(), (ty, layout));
}*/
}
ty
}
fn immediate_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if let Abi::Scalar(ref scalar) = self.abi {
if scalar.is_bool() {
return cx.type_i1();
}
}
self.gcc_type(cx, true)
}
fn scalar_gcc_type_at<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, scalar: &abi::Scalar, offset: Size) -> Type<'gcc> {
match scalar.value {
Int(i, true) => cx.type_from_integer(i),
Int(i, false) => cx.type_from_unsigned_integer(i),
F32 => cx.type_f32(),
F64 => cx.type_f64(),
Pointer => {
// If we know the alignment, pick something better than i8.
let pointee =
if let Some(pointee) = self.pointee_info_at(cx, offset) {
cx.type_pointee_for_align(pointee.align)
}
else {
cx.type_i8()
};
cx.type_ptr_to(pointee)
}
}
}
fn scalar_pair_element_gcc_type<'gcc>(&self, cx: &CodegenCx<'gcc, 'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
// TODO: remove llvm hack:
// HACK(eddyb) special-case fat pointers until LLVM removes
// pointee types, to avoid bitcasting every `OperandRef::deref`.
match self.ty.kind() {
ty::Ref(..) | ty::RawPtr(_) => {
return self.field(cx, index).gcc_type(cx, true);
}
ty::Adt(def, _) if def.is_box() => {
let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
return cx.layout_of(ptr_ty).scalar_pair_element_gcc_type(cx, index, immediate);
}
_ => {}
}
let (a, b) = match self.abi {
Abi::ScalarPair(ref a, ref b) => (a, b),
_ => bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self),
};
let scalar = [a, b][index];
// Make sure to return the same type `immediate_gcc_type` would when
// dealing with an immediate pair. This means that `(bool, bool)` is
// effectively represented as `{i8, i8}` in memory and two `i1`s as an
// immediate, just like `bool` is typically `i8` in memory and only `i1`
// when immediate. We need to load/store `bool` as `i8` to avoid
// crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
// TODO: this bugs certainly don't happen in this case since the bool type is used instead of i1.
if /*immediate &&*/ scalar.is_bool() {
return cx.type_i1();
}
let offset =
if index == 0 {
Size::ZERO
}
else {
a.value.size(cx).align_to(b.value.align(cx).abi)
};
self.scalar_gcc_type_at(cx, scalar, offset)
}
fn gcc_field_index(&self, index: usize) -> u64 {
match self.abi {
Abi::Scalar(_) | Abi::ScalarPair(..) => {
bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
}
_ => {}
}
match self.fields {
FieldsShape::Primitive | FieldsShape::Union(_) => {
bug!("TyAndLayout::gcc_field_index({:?}): not applicable", self)
}
FieldsShape::Array { .. } => index as u64,
FieldsShape::Arbitrary { .. } => 1 + (self.fields.memory_index(index) as u64) * 2,
}
}
fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size) -> Option<PointeeInfo> {
if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
return pointee;
}
let result = Ty::pointee_info_at(*self, cx, offset);
cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
result
}
}
impl<'gcc, 'tcx> LayoutTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
layout.gcc_type(self, true)
}
fn immediate_backend_type(&self, layout: TyAndLayout<'tcx>) -> Type<'gcc> {
layout.immediate_gcc_type(self)
}
fn is_backend_immediate(&self, layout: TyAndLayout<'tcx>) -> bool {
layout.is_gcc_immediate()
}
fn is_backend_scalar_pair(&self, layout: TyAndLayout<'tcx>) -> bool {
layout.is_gcc_scalar_pair()
}
fn backend_field_index(&self, layout: TyAndLayout<'tcx>, index: usize) -> u64 {
layout.gcc_field_index(index)
}
fn scalar_pair_element_backend_type(&self, layout: TyAndLayout<'tcx>, index: usize, immediate: bool) -> Type<'gcc> {
layout.scalar_pair_element_gcc_type(self, index, immediate)
}
fn cast_backend_type(&self, ty: &CastTarget) -> Type<'gcc> {
ty.gcc_type(self)
}
fn fn_ptr_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> Type<'gcc> {
fn_abi.ptr_to_gcc_type(self)
}
fn reg_backend_type(&self, _ty: &Reg) -> Type<'gcc> {
unimplemented!();
//ty.gcc_type(self)
}
}

View File

@@ -0,0 +1,179 @@
/*use gccjit::{RValue, ToRValue, Type};
use rustc_codegen_ssa::mir::operand::OperandRef;
use rustc_codegen_ssa::{
common::IntPredicate,
traits::{BaseTypeMethods, BuilderMethods, ConstMethods, DerivedTypeMethods},
};
use rustc_middle::ty::layout::HasTyCtxt;
use rustc_middle::ty::Ty;
use rustc_target::abi::{Align, Endian, HasDataLayout, LayoutOf, Size};
use crate::builder::Builder;
use crate::type_of::LayoutGccExt;
fn round_pointer_up_to_alignment<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, addr: RValue<'gcc>, align: Align, ptr_ty: Type<'gcc>) -> RValue<'gcc> {
let mut ptr_as_int = bx.ptrtoint(addr, bx.cx().type_isize());
ptr_as_int = bx.add(ptr_as_int, bx.cx().const_i32(align.bytes() as i32 - 1));
ptr_as_int = bx.and(ptr_as_int, bx.cx().const_i32(-(align.bytes() as i32)));
bx.inttoptr(ptr_as_int, ptr_ty)
}
fn emit_direct_ptr_va_arg<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, list: OperandRef<'tcx, RValue<'gcc>>, llty: Type<'gcc>, size: Size, align: Align, slot_size: Align, allow_higher_align: bool) -> (RValue<'gcc>, Align) {
let va_list_ptr_ty = bx.cx().type_ptr_to(bx.cx.type_i8p());
let va_list_addr =
if list.layout.gcc_type(bx.cx, true) != va_list_ptr_ty {
bx.bitcast(list.immediate(), va_list_ptr_ty)
}
else {
list.immediate()
};
let ptr = bx.load(va_list_addr, bx.tcx().data_layout.pointer_align.abi);
let (addr, addr_align) = if allow_higher_align && align > slot_size {
(round_pointer_up_to_alignment(bx, ptr, align, bx.cx().type_i8p()), align)
} else {
(ptr, slot_size)
};
let aligned_size = size.align_to(slot_size).bytes() as i32;
let full_direct_size = bx.cx().const_i32(aligned_size);
let next = bx.inbounds_gep(addr, &[full_direct_size]);
bx.store(next, va_list_addr, bx.tcx().data_layout.pointer_align.abi);
if size.bytes() < slot_size.bytes() && bx.tcx().sess.target.endian == Endian::Big {
let adjusted_size = bx.cx().const_i32((slot_size.bytes() - size.bytes()) as i32);
let adjusted = bx.inbounds_gep(addr, &[adjusted_size]);
(bx.bitcast(adjusted, bx.cx().type_ptr_to(llty)), addr_align)
} else {
(bx.bitcast(addr, bx.cx().type_ptr_to(llty)), addr_align)
}
}
fn emit_ptr_va_arg<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, list: OperandRef<'tcx, RValue<'gcc>>, target_ty: Ty<'tcx>, indirect: bool, slot_size: Align, allow_higher_align: bool) -> RValue<'gcc> {
let layout = bx.cx.layout_of(target_ty);
let (llty, size, align) =
if indirect {
(
bx.cx.layout_of(bx.cx.tcx.mk_imm_ptr(target_ty)).gcc_type(bx.cx, true),
bx.cx.data_layout().pointer_size,
bx.cx.data_layout().pointer_align,
)
}
else {
(layout.gcc_type(bx.cx, true), layout.size, layout.align)
};
let (addr, addr_align) = emit_direct_ptr_va_arg(bx, list, llty, size, align.abi, slot_size, allow_higher_align);
if indirect {
let tmp_ret = bx.load(addr, addr_align);
bx.load(tmp_ret, align.abi)
}
else {
bx.load(addr, addr_align)
}
}
fn emit_aapcs_va_arg<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, list: OperandRef<'tcx, RValue<'gcc>>, target_ty: Ty<'tcx>) -> RValue<'gcc> {
// Implementation of the AAPCS64 calling convention for va_args see
// https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst
let va_list_addr = list.immediate();
let layout = bx.cx.layout_of(target_ty);
let gcc_type = layout.immediate_gcc_type(bx);
let function = bx.llbb().get_function();
let variable = function.new_local(None, gcc_type, "va_arg");
let mut maybe_reg = bx.build_sibling_block("va_arg.maybe_reg");
let mut in_reg = bx.build_sibling_block("va_arg.in_reg");
let mut on_stack = bx.build_sibling_block("va_arg.on_stack");
let end = bx.build_sibling_block("va_arg.end");
let zero = bx.const_i32(0);
let offset_align = Align::from_bytes(4).unwrap();
assert!(bx.tcx().sess.target.endian == Endian::Little);
let gr_type = target_ty.is_any_ptr() || target_ty.is_integral();
let (reg_off, reg_top_index, slot_size) = if gr_type {
let gr_offs = bx.struct_gep(va_list_addr, 7);
let nreg = (layout.size.bytes() + 7) / 8;
(gr_offs, 3, nreg * 8)
} else {
let vr_off = bx.struct_gep(va_list_addr, 9);
let nreg = (layout.size.bytes() + 15) / 16;
(vr_off, 5, nreg * 16)
};
// if the offset >= 0 then the value will be on the stack
let mut reg_off_v = bx.load(reg_off, offset_align);
let use_stack = bx.icmp(IntPredicate::IntSGE, reg_off_v, zero);
bx.cond_br(use_stack, on_stack.llbb(), maybe_reg.llbb());
// The value at this point might be in a register, but there is a chance that
// it could be on the stack so we have to update the offset and then check
// the offset again.
if gr_type && layout.align.abi.bytes() > 8 {
reg_off_v = maybe_reg.add(reg_off_v, bx.const_i32(15));
reg_off_v = maybe_reg.and(reg_off_v, bx.const_i32(-16));
}
let new_reg_off_v = maybe_reg.add(reg_off_v, bx.const_i32(slot_size as i32));
maybe_reg.store(new_reg_off_v, reg_off, offset_align);
// Check to see if we have overflowed the registers as a result of this.
// If we have then we need to use the stack for this value
let use_stack = maybe_reg.icmp(IntPredicate::IntSGT, new_reg_off_v, zero);
maybe_reg.cond_br(use_stack, on_stack.llbb(), in_reg.llbb());
let top = in_reg.struct_gep(va_list_addr, reg_top_index);
let top = in_reg.load(top, bx.tcx().data_layout.pointer_align.abi);
// reg_value = *(@top + reg_off_v);
let top = in_reg.gep(top, &[reg_off_v]);
let top = in_reg.bitcast(top, bx.cx.type_ptr_to(layout.gcc_type(bx, true)));
let reg_value = in_reg.load(top, layout.align.abi);
in_reg.assign(variable, reg_value);
in_reg.br(end.llbb());
// On Stack block
let stack_value =
emit_ptr_va_arg(&mut on_stack, list, target_ty, false, Align::from_bytes(8).unwrap(), true);
on_stack.assign(variable, stack_value);
on_stack.br(end.llbb());
*bx = end;
variable.to_rvalue()
}
pub(super) fn emit_va_arg<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, addr: OperandRef<'tcx, RValue<'gcc>>, target_ty: Ty<'tcx>) -> RValue<'gcc> {
// Determine the va_arg implementation to use. The LLVM va_arg instruction
// is lacking in some instances, so we should only use it as a fallback.
let target = &bx.cx.tcx.sess.target;
let arch = &bx.cx.tcx.sess.target.arch;
match &**arch {
// Windows x86
"x86" if target.options.is_like_windows => {
emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(4).unwrap(), false)
}
// Generic x86
"x86" => emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(4).unwrap(), true),
// Windows AArch64
"aarch64" if target.options.is_like_windows => {
emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(8).unwrap(), false)
}
// macOS / iOS AArch64
"aarch64" if target.options.is_like_osx => {
emit_ptr_va_arg(bx, addr, target_ty, false, Align::from_bytes(8).unwrap(), true)
}
"aarch64" => emit_aapcs_va_arg(bx, addr, target_ty),
// Windows x86_64
"x86_64" if target.options.is_like_windows => {
let target_ty_size = bx.cx.size_of(target_ty).bytes();
let indirect: bool = target_ty_size > 8 || !target_ty_size.is_power_of_two();
emit_ptr_va_arg(bx, addr, target_ty, indirect, Align::from_bytes(8).unwrap(), false)
}
// For all other architecture/OS combinations fall back to using
// the LLVM va_arg instruction.
// https://llvm.org/docs/LangRef.html#va-arg-instruction
_ => bx.va_arg(addr.immediate(), bx.cx.layout_of(target_ty).gcc_type(bx.cx, true)),
}
}*/