Merge branch 'master' into master
This commit is contained in:
@@ -87,7 +87,6 @@ pub trait F32Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn sin(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn cos(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
@@ -114,7 +113,6 @@ pub trait F32Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp_m1(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln_1p(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
@@ -253,7 +251,6 @@ impl F32Ext for f32 {
|
||||
sinf(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn cos(self) -> Self {
|
||||
cosf(self)
|
||||
@@ -295,7 +292,6 @@ impl F32Ext for f32 {
|
||||
expm1f(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln_1p(self) -> Self {
|
||||
log1pf(self)
|
||||
@@ -389,10 +385,8 @@ pub trait F64Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp2(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn log(self, base: Self) -> Self;
|
||||
|
||||
fn log2(self) -> Self;
|
||||
@@ -434,7 +428,6 @@ pub trait F64Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp_m1(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln_1p(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
@@ -539,13 +532,11 @@ impl F64Ext for f64 {
|
||||
exp2(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln(self) -> Self {
|
||||
log(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn log(self, base: Self) -> Self {
|
||||
self.ln() / base.ln()
|
||||
@@ -620,7 +611,6 @@ impl F64Ext for f64 {
|
||||
expm1(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln_1p(self) -> Self {
|
||||
log1p(self)
|
||||
|
||||
71
library/compiler-builtins/libm/src/math/cosf.rs
Normal file
71
library/compiler-builtins/libm/src/math/cosf.rs
Normal file
@@ -0,0 +1,71 @@
|
||||
use super::{k_cosf, k_sinf, rem_pio2f};
|
||||
|
||||
use core::f64::consts::FRAC_PI_2;
|
||||
|
||||
/* Small multiples of pi/2 rounded to double precision. */
|
||||
const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
|
||||
const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
|
||||
const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
|
||||
const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
|
||||
|
||||
#[inline]
|
||||
pub fn cosf(x: f32) -> f32 {
|
||||
let x64 = x as f64;
|
||||
|
||||
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
|
||||
|
||||
let mut ix = x.to_bits();
|
||||
let sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if ix <= 0x3f490fda {
|
||||
/* |x| ~<= pi/4 */
|
||||
if ix < 0x39800000 {
|
||||
/* |x| < 2**-12 */
|
||||
/* raise inexact if x != 0 */
|
||||
force_eval!(x + x1p120);
|
||||
return 1.;
|
||||
}
|
||||
return k_cosf(x64);
|
||||
}
|
||||
if ix <= 0x407b53d1 {
|
||||
/* |x| ~<= 5*pi/4 */
|
||||
if ix > 0x4016cbe3 {
|
||||
/* |x| ~> 3*pi/4 */
|
||||
return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 });
|
||||
} else {
|
||||
if sign {
|
||||
return k_sinf(x64 + C1_PIO2);
|
||||
} else {
|
||||
return k_sinf(C1_PIO2 - x64);
|
||||
}
|
||||
}
|
||||
}
|
||||
if ix <= 0x40e231d5 {
|
||||
/* |x| ~<= 9*pi/4 */
|
||||
if ix > 0x40afeddf {
|
||||
/* |x| ~> 7*pi/4 */
|
||||
return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 });
|
||||
} else {
|
||||
if sign {
|
||||
return k_sinf(-x64 - C3_PIO2);
|
||||
} else {
|
||||
return k_sinf(x64 - C3_PIO2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
if ix >= 0x7f800000 {
|
||||
return x - x;
|
||||
}
|
||||
|
||||
/* general argument reduction needed */
|
||||
let (n, y) = rem_pio2f(x);
|
||||
match n & 3 {
|
||||
0 => k_cosf(y),
|
||||
1 => k_sinf(-y),
|
||||
2 => -k_cosf(y),
|
||||
_ => k_sinf(y),
|
||||
}
|
||||
}
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::scalbnf;
|
||||
|
||||
const HALF: [f32; 2] = [0.5, -0.5];
|
||||
|
||||
13
library/compiler-builtins/libm/src/math/k_cosf.rs
Normal file
13
library/compiler-builtins/libm/src/math/k_cosf.rs
Normal file
@@ -0,0 +1,13 @@
|
||||
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
|
||||
const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */
|
||||
const C1: f64 = 0.0416666233237390631894; /* 0x155553e1053a42.0p-57 */
|
||||
const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */
|
||||
const C3: f64 = 0.0000243904487962774090654; /* 0x199342e0ee5069.0p-68 */
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn k_cosf(x: f64) -> f32 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = C2 + z * C3;
|
||||
(((1.0 + z * C0) + w * C1) + (w * z) * r) as f32
|
||||
}
|
||||
14
library/compiler-builtins/libm/src/math/k_sinf.rs
Normal file
14
library/compiler-builtins/libm/src/math/k_sinf.rs
Normal file
@@ -0,0 +1,14 @@
|
||||
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
|
||||
const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */
|
||||
const S2: f64 = 0.0083333293858894631756; /* 0x111110896efbb2.0p-59 */
|
||||
const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */
|
||||
const S4: f64 = 0.0000027183114939898219064; /* 0x16cd878c3b46a7.0p-71 */
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn k_sinf(x: f64) -> f32 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = S3 + z * S4;
|
||||
let s = z * x;
|
||||
((x + s * (S1 + z * S2)) + s * w * r) as f32
|
||||
}
|
||||
117
library/compiler-builtins/libm/src/math/log.rs
Normal file
117
library/compiler-builtins/libm/src/math/log.rs
Normal file
@@ -0,0 +1,117 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* log(x)
|
||||
* Return the logarithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Remez algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[inline]
|
||||
pub fn log(mut x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui = x.to_bits();
|
||||
let mut hx: u32 = (ui >> 32) as u32;
|
||||
let mut k: i32 = 0;
|
||||
|
||||
if (hx < 0x00100000) || ((hx >> 31) != 0) {
|
||||
/* x < 2**-126 */
|
||||
if ui << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if hx >> 31 != 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= x1p54;
|
||||
ui = x.to_bits();
|
||||
hx = (ui >> 32) as u32;
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
} else if hx == 0x3ff00000 && ui << 32 == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += ((hx >> 20) as i32) - 0x3ff;
|
||||
hx = (hx & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = ((hx as u64) << 32) | (ui & 0xffffffff);
|
||||
x = f64::from_bits(ui);
|
||||
|
||||
let f: f64 = x - 1.0;
|
||||
let hfsq: f64 = 0.5 * f * f;
|
||||
let s: f64 = f / (2.0 + f);
|
||||
let z: f64 = s * s;
|
||||
let w: f64 = z * z;
|
||||
let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
let r: f64 = t2 + t1;
|
||||
let dk: f64 = k as f64;
|
||||
return s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
@@ -1,3 +1,22 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 10 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* See comments in log10.c.
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */
|
||||
|
||||
142
library/compiler-builtins/libm/src/math/log1p.rs
Normal file
142
library/compiler-builtins/libm/src/math/log1p.rs
Normal file
@@ -0,0 +1,142 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double log1p(double x)
|
||||
* Return the natural logarithm of 1+x.
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log(1+f): See log.c
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
pub fn log1p(x: f64) -> f64 {
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let hfsq: f64;
|
||||
let mut f: f64 = 0.;
|
||||
let mut c: f64 = 0.;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let w: f64;
|
||||
let t1: f64;
|
||||
let t2: f64;
|
||||
let dk: f64;
|
||||
let hx: u32;
|
||||
let mut hu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
hx = (ui >> 32) as u32;
|
||||
k = 1;
|
||||
if hx < 0x3fda827a || (hx >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if hx >= 0xbff00000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1) = -inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
|
||||
}
|
||||
if hx << 1 < 0x3ca00000 << 1 {
|
||||
/* |x| < 2**-53 */
|
||||
/* underflow if subnormal */
|
||||
if (hx & 0x7ff00000) == 0 {
|
||||
force_eval!(x as f32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if hx <= 0xbfd2bec4 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
hu = (ui >> 32) as u32;
|
||||
hu += 0x3ff00000 - 0x3fe6a09e;
|
||||
k = (hu >> 20) as i32 - 0x3ff;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 54 {
|
||||
c = if k >= 2 {
|
||||
1. - (f64::from_bits(ui) - x)
|
||||
} else {
|
||||
x - (f64::from_bits(ui) - 1.)
|
||||
};
|
||||
c /= f64::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
hu = (hu & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = (hu as u64) << 32 | (ui & 0xffffffff);
|
||||
f = f64::from_bits(ui) - 1.;
|
||||
}
|
||||
hfsq = 0.5 * f * f;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
r = t2 + t1;
|
||||
dk = k as f64;
|
||||
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
97
library/compiler-builtins/libm/src/math/log1pf.rs
Normal file
97
library/compiler-builtins/libm/src/math/log1pf.rs
Normal file
@@ -0,0 +1,97 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
|
||||
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
|
||||
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
|
||||
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
|
||||
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
|
||||
|
||||
pub fn log1pf(x: f32) -> f32 {
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let hfsq: f32;
|
||||
let mut f: f32 = 0.;
|
||||
let mut c: f32 = 0.;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let w: f32;
|
||||
let t1: f32;
|
||||
let t2: f32;
|
||||
let dk: f32;
|
||||
let ix: u32;
|
||||
let mut iu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
ix = ui;
|
||||
k = 1;
|
||||
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if ix >= 0xbf800000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1)=+inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if ix << 1 < 0x33800000 << 1 {
|
||||
/* |x| < 2**-24 */
|
||||
/* underflow if subnormal */
|
||||
if (ix & 0x7f800000) == 0 {
|
||||
force_eval!(x * x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if ix <= 0xbe95f619 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if ix >= 0x7f800000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
iu = ui;
|
||||
iu += 0x3f800000 - 0x3f3504f3;
|
||||
k = (iu >> 23) as i32 - 0x7f;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 25 {
|
||||
c = if k >= 2 {
|
||||
1. - (f32::from_bits(ui) - x)
|
||||
} else {
|
||||
x - (f32::from_bits(ui) - 1.)
|
||||
};
|
||||
c /= f32::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
iu = (iu & 0x007fffff) + 0x3f3504f3;
|
||||
ui = iu;
|
||||
f = f32::from_bits(ui) - 1.;
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * LG4);
|
||||
t2 = z * (LG1 + w * LG3);
|
||||
r = t2 + t1;
|
||||
hfsq = 0.5 * f * f;
|
||||
dk = k as f32;
|
||||
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
@@ -1,3 +1,22 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 2 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log2(x) = (f - f*f/2 + r)/log(2) + k
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* See comments in log2.c.
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
|
||||
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
|
||||
@@ -7,6 +7,7 @@ macro_rules! force_eval {
|
||||
}
|
||||
|
||||
mod ceilf;
|
||||
mod cosf;
|
||||
mod expf;
|
||||
mod fabs;
|
||||
mod fabsf;
|
||||
@@ -16,8 +17,11 @@ mod fmod;
|
||||
mod fmodf;
|
||||
mod hypot;
|
||||
mod hypotf;
|
||||
mod log;
|
||||
mod log10;
|
||||
mod log10f;
|
||||
mod log1p;
|
||||
mod log1pf;
|
||||
mod log2;
|
||||
mod log2f;
|
||||
mod logf;
|
||||
@@ -31,11 +35,39 @@ mod sqrtf;
|
||||
mod trunc;
|
||||
mod truncf;
|
||||
|
||||
//mod service;
|
||||
// Use separated imports instead of {}-grouped imports for easier merging.
|
||||
pub use self::ceilf::ceilf;
|
||||
pub use self::cosf::cosf;
|
||||
pub use self::expf::expf;
|
||||
pub use self::fabs::fabs;
|
||||
pub use self::fabsf::fabsf;
|
||||
pub use self::floor::floor;
|
||||
pub use self::floorf::floorf;
|
||||
pub use self::fmod::fmod;
|
||||
pub use self::fmodf::fmodf;
|
||||
pub use self::hypot::hypot;
|
||||
pub use self::hypotf::hypotf;
|
||||
pub use self::log::log;
|
||||
pub use self::log10::log10;
|
||||
pub use self::log10f::log10f;
|
||||
pub use self::log1p::log1p;
|
||||
pub use self::log1pf::log1pf;
|
||||
pub use self::log2::log2;
|
||||
pub use self::log2f::log2f;
|
||||
pub use self::logf::logf;
|
||||
pub use self::powf::powf;
|
||||
pub use self::round::round;
|
||||
pub use self::roundf::roundf;
|
||||
pub use self::scalbn::scalbn;
|
||||
pub use self::scalbnf::scalbnf;
|
||||
pub use self::sqrt::sqrt;
|
||||
pub use self::sqrtf::sqrtf;
|
||||
pub use self::trunc::trunc;
|
||||
pub use self::truncf::truncf;
|
||||
|
||||
pub use self::{
|
||||
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmod::fmod,
|
||||
fmodf::fmodf, hypot::hypot, hypotf::hypotf, log10::log10, log10f::log10f, log2::log2,
|
||||
log2f::log2f, logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn,
|
||||
scalbnf::scalbnf, sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
|
||||
};
|
||||
mod k_cosf;
|
||||
mod k_sinf;
|
||||
mod rem_pio2_large;
|
||||
mod rem_pio2f;
|
||||
|
||||
use self::{k_cosf::k_cosf, k_sinf::k_sinf, rem_pio2_large::rem_pio2_large, rem_pio2f::rem_pio2f};
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{fabsf, scalbnf, sqrtf};
|
||||
|
||||
const BP: [f32; 2] = [1.0, 1.5];
|
||||
|
||||
450
library/compiler-builtins/libm/src/math/rem_pio2_large.rs
Normal file
450
library/compiler-builtins/libm/src/math/rem_pio2_large.rs
Normal file
@@ -0,0 +1,450 @@
|
||||
use super::floor;
|
||||
use super::scalbn;
|
||||
|
||||
// initial value for jk
|
||||
const INIT_JK: [usize; 4] = [3, 4, 4, 6];
|
||||
|
||||
// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
//
|
||||
// integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
// bit of 2/pi after binary point. The corresponding
|
||||
// floating value is
|
||||
//
|
||||
// ipio2[i] * 2^(-24(i+1)).
|
||||
//
|
||||
// NB: This table must have at least (e0-3)/24 + jk terms.
|
||||
// For quad precision (e0 <= 16360, jk = 6), this is 686.
|
||||
#[cfg(target_pointer_width = "32")]
|
||||
const IPIO2: [i32; 66] = [
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
|
||||
0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
|
||||
0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
|
||||
0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
|
||||
0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
];
|
||||
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
const IPIO2: [i32; 690] = [
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
|
||||
0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
|
||||
0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
|
||||
0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
|
||||
0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
|
||||
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26,
|
||||
0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
|
||||
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B,
|
||||
0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
|
||||
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A,
|
||||
0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
|
||||
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2,
|
||||
0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
|
||||
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE,
|
||||
0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
|
||||
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2,
|
||||
0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
|
||||
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593,
|
||||
0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
|
||||
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199,
|
||||
0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
|
||||
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD,
|
||||
0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
|
||||
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B,
|
||||
0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
|
||||
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C,
|
||||
0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
|
||||
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C,
|
||||
0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
|
||||
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364,
|
||||
0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
|
||||
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6,
|
||||
0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
|
||||
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47,
|
||||
0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
|
||||
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B,
|
||||
0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
|
||||
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6,
|
||||
0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
|
||||
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA,
|
||||
0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
|
||||
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7,
|
||||
0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
|
||||
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D,
|
||||
0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
|
||||
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B,
|
||||
0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
|
||||
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F,
|
||||
0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
|
||||
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E,
|
||||
0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
|
||||
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555,
|
||||
0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
|
||||
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD,
|
||||
0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
|
||||
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9,
|
||||
0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
|
||||
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD,
|
||||
0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
|
||||
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0,
|
||||
0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
|
||||
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351,
|
||||
0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
|
||||
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51,
|
||||
0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
|
||||
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA,
|
||||
0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
|
||||
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385,
|
||||
0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
|
||||
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4,
|
||||
0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
|
||||
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5,
|
||||
0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
|
||||
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
|
||||
];
|
||||
|
||||
const PIO2: [f64; 8] = [
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
];
|
||||
|
||||
// fn rem_pio2_large(x : &[f64], y : &mut [f64], e0 : i32, prec : usize) -> i32
|
||||
//
|
||||
// Input parameters:
|
||||
// x[] The input value (must be positive) is broken into nx
|
||||
// pieces of 24-bit integers in double precision format.
|
||||
// x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
// match x's up to 24 bits.
|
||||
//
|
||||
// Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
// e0 = ilogb(z)-23
|
||||
// z = scalbn(z,-e0)
|
||||
// for i = 0,1,2
|
||||
// x[i] = floor(z)
|
||||
// z = (z-x[i])*2**24
|
||||
//
|
||||
// y[] ouput result in an array of double precision numbers.
|
||||
// The dimension of y[] is:
|
||||
// 24-bit precision 1
|
||||
// 53-bit precision 2
|
||||
// 64-bit precision 2
|
||||
// 113-bit precision 3
|
||||
// The actual value is the sum of them. Thus for 113-bit
|
||||
// precison, one may have to do something like:
|
||||
//
|
||||
// long double t,w,r_head, r_tail;
|
||||
// t = (long double)y[2] + (long double)y[1];
|
||||
// w = (long double)y[0];
|
||||
// r_head = t+w;
|
||||
// r_tail = w - (r_head - t);
|
||||
//
|
||||
// e0 The exponent of x[0]. Must be <= 16360 or you need to
|
||||
// expand the ipio2 table.
|
||||
//
|
||||
// prec an integer indicating the precision:
|
||||
// 0 24 bits (single)
|
||||
// 1 53 bits (double)
|
||||
// 2 64 bits (extended)
|
||||
// 3 113 bits (quad)
|
||||
//
|
||||
// Here is the description of some local variables:
|
||||
//
|
||||
// jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
// in the computation. The minimum and recommended value
|
||||
// for jk is 3,4,4,6 for single, double, extended, and quad.
|
||||
// jk+1 must be 2 larger than you might expect so that our
|
||||
// recomputation test works. (Up to 24 bits in the integer
|
||||
// part (the 24 bits of it that we compute) and 23 bits in
|
||||
// the fraction part may be lost to cancelation before we
|
||||
// recompute.)
|
||||
//
|
||||
// jz local integer variable indicating the number of
|
||||
// terms of ipio2[] used.
|
||||
//
|
||||
// jx nx - 1
|
||||
//
|
||||
// jv index for pointing to the suitable ipio2[] for the
|
||||
// computation. In general, we want
|
||||
// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
// is an integer. Thus
|
||||
// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
// Hence jv = max(0,(e0-3)/24).
|
||||
//
|
||||
// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
//
|
||||
// q[] double array with integral value, representing the
|
||||
// 24-bits chunk of the product of x and 2/pi.
|
||||
//
|
||||
// q0 the corresponding exponent of q[0]. Note that the
|
||||
// exponent for q[i] would be q0-24*i.
|
||||
//
|
||||
// PIo2[] double precision array, obtained by cutting pi/2
|
||||
// into 24 bits chunks.
|
||||
//
|
||||
// f[] ipio2[] in floating point
|
||||
//
|
||||
// iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
//
|
||||
// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
//
|
||||
// ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
// it also indicates the *sign* of the result.
|
||||
|
||||
/// Return the last three digits of N with y = x - N*pi/2
|
||||
/// so that |y| < pi/2.
|
||||
///
|
||||
/// The method is to compute the integer (mod 8) and fraction parts of
|
||||
/// (2/pi)*x without doing the full multiplication. In general we
|
||||
/// skip the part of the product that are known to be a huge integer (
|
||||
/// more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
/// independent of the exponent of the input.
|
||||
#[inline]
|
||||
pub(crate) fn rem_pio2_large(x: &[f64], y: &mut [f64], e0: i32, prec: usize) -> i32 {
|
||||
let x1p24 = f64::from_bits(0x4170000000000000); // 0x1p24 === 2 ^ 24
|
||||
let x1p_24 = f64::from_bits(0x3e70000000000000); // 0x1p_24 === 2 ^ (-24)
|
||||
|
||||
#[cfg(target_pointer_width = "64")]
|
||||
assert!(e0 <= 16360);
|
||||
|
||||
let nx = x.len();
|
||||
|
||||
let mut fw: f64;
|
||||
let mut n: i32;
|
||||
let mut ih: i32;
|
||||
let mut z: f64;
|
||||
let mut f: [f64; 20] = [0.; 20];
|
||||
let mut fq: [f64; 20] = [0.; 20];
|
||||
let mut q: [f64; 20] = [0.; 20];
|
||||
let mut iq: [i32; 20] = [0; 20];
|
||||
|
||||
/* initialize jk*/
|
||||
let jk = INIT_JK[prec];
|
||||
let jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
let jx = nx - 1;
|
||||
let mut jv = (e0 - 3) / 24;
|
||||
if jv < 0 {
|
||||
jv = 0;
|
||||
}
|
||||
let mut q0 = e0 - 24 * (jv + 1);
|
||||
let jv = jv as usize;
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
let mut j = (jv - jx) as i32;
|
||||
let m = jx + jk;
|
||||
for i in 0..=m {
|
||||
f[i] = if j < 0 { 0. } else { IPIO2[j as usize] as f64 };
|
||||
j += 1
|
||||
}
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for i in 0..=jk {
|
||||
fw = 0f64;
|
||||
for j in 0..=jx {
|
||||
fw += x[j] * f[jx + i - j];
|
||||
}
|
||||
q[i] = fw;
|
||||
}
|
||||
|
||||
let mut jz = jk;
|
||||
|
||||
'recompute: loop {
|
||||
/* distill q[] into iq[] reversingly */
|
||||
let mut i = 0i32;
|
||||
z = q[jz];
|
||||
for j in (1..=jz).rev() {
|
||||
fw = (x1p_24 * z) as i32 as f64;
|
||||
iq[i as usize] = (z - x1p24 * fw) as i32;
|
||||
z = q[j - 1] + fw;
|
||||
i += 1;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbn(z, q0); /* actual value of z */
|
||||
z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
|
||||
n = z as i32;
|
||||
z -= n as f64;
|
||||
ih = 0;
|
||||
if q0 > 0 {
|
||||
/* need iq[jz-1] to determine n */
|
||||
i = iq[jz - 1] >> (24 - q0);
|
||||
n += i;
|
||||
iq[jz - 1] -= i << (24 - q0);
|
||||
ih = iq[jz - 1] >> (23 - q0);
|
||||
} else if q0 == 0 {
|
||||
ih = iq[jz - 1] >> 23;
|
||||
} else if z >= 0.5 {
|
||||
ih = 2;
|
||||
}
|
||||
|
||||
if ih > 0 {
|
||||
/* q > 0.5 */
|
||||
n += 1;
|
||||
let mut carry = 0i32;
|
||||
for i in 0..jz {
|
||||
/* compute 1-q */
|
||||
let j = iq[i];
|
||||
if carry == 0 {
|
||||
if j != 0 {
|
||||
carry = 1;
|
||||
iq[i] = 0x1000000 - j;
|
||||
}
|
||||
} else {
|
||||
iq[i] = 0xffffff - j;
|
||||
}
|
||||
}
|
||||
if q0 > 0 {
|
||||
/* rare case: chance is 1 in 12 */
|
||||
match q0 {
|
||||
1 => {
|
||||
iq[jz - 1] &= 0x7fffff;
|
||||
}
|
||||
2 => {
|
||||
iq[jz - 1] &= 0x3fffff;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
if ih == 2 {
|
||||
z = 1. - z;
|
||||
if carry != 0 {
|
||||
z -= scalbn(1., q0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if z == 0. {
|
||||
let mut j = 0;
|
||||
for i in (jk..=jz - 1).rev() {
|
||||
j |= iq[i];
|
||||
}
|
||||
if j == 0 {
|
||||
/* need recomputation */
|
||||
let mut k = 1;
|
||||
while iq[jk - k] == 0 {
|
||||
k += 1; /* k = no. of terms needed */
|
||||
}
|
||||
|
||||
for i in (jz + 1)..=(jz + k) {
|
||||
/* add q[jz+1] to q[jz+k] */
|
||||
f[jx + i] = IPIO2[jv + i] as f64;
|
||||
fw = 0f64;
|
||||
for j in 0..=jx {
|
||||
fw += x[j] * f[jx + i - j];
|
||||
}
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
continue 'recompute;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if z == 0. {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
while iq[jz] == 0 {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
}
|
||||
} else {
|
||||
/* break z into 24-bit if necessary */
|
||||
z = scalbn(z, -q0);
|
||||
if z >= x1p24 {
|
||||
fw = (x1p_24 * z) as i32 as f64;
|
||||
iq[jz] = (z - x1p24 * fw) as i32;
|
||||
jz += 1;
|
||||
q0 += 24;
|
||||
iq[jz] = fw as i32;
|
||||
} else {
|
||||
iq[jz] = z as i32;
|
||||
}
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbn(1., q0);
|
||||
for i in (0..=jz).rev() {
|
||||
q[i] = fw * (iq[i] as f64);
|
||||
fw *= x1p_24;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for i in (0..=jz).rev() {
|
||||
fw = 0f64;
|
||||
let mut k = 0;
|
||||
while (k <= jp) && (k <= jz - i) {
|
||||
fw += PIO2[k] * q[i + k];
|
||||
k += 1;
|
||||
}
|
||||
fq[jz - i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
match prec {
|
||||
0 => {
|
||||
fw = 0f64;
|
||||
for i in (0..=jz).rev() {
|
||||
fw += fq[i];
|
||||
}
|
||||
y[0] = if ih == 0 { fw } else { -fw };
|
||||
}
|
||||
1 | 2 => {
|
||||
fw = 0f64;
|
||||
for i in (0..=jz).rev() {
|
||||
fw += fq[i];
|
||||
}
|
||||
// TODO: drop excess precision here once double_t is used
|
||||
fw = fw as f64;
|
||||
y[0] = if ih == 0 { fw } else { -fw };
|
||||
fw = fq[0] - fw;
|
||||
for i in 1..=jz {
|
||||
fw += fq[i];
|
||||
}
|
||||
y[1] = if ih == 0 { fw } else { -fw };
|
||||
}
|
||||
3 => {
|
||||
/* painful */
|
||||
for i in (1..=jz).rev() {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i - 1] = fw;
|
||||
}
|
||||
for i in (2..=jz).rev() {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i - 1] = fw;
|
||||
}
|
||||
fw = 0f64;
|
||||
for i in (2..=jz).rev() {
|
||||
fw += fq[i];
|
||||
}
|
||||
if ih == 0 {
|
||||
y[0] = fq[0];
|
||||
y[1] = fq[1];
|
||||
y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0];
|
||||
y[1] = -fq[1];
|
||||
y[2] = -fw;
|
||||
}
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
n & 7
|
||||
}
|
||||
46
library/compiler-builtins/libm/src/math/rem_pio2f.rs
Normal file
46
library/compiler-builtins/libm/src/math/rem_pio2f.rs
Normal file
@@ -0,0 +1,46 @@
|
||||
use super::rem_pio2_large;
|
||||
|
||||
use core::f64;
|
||||
|
||||
const TOINT: f64 = 1.5 / f64::EPSILON;
|
||||
|
||||
/// 53 bits of 2/pi
|
||||
const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
|
||||
/// first 25 bits of pi/2
|
||||
const PIO2_1: f64 = 1.57079631090164184570e+00; /* 0x3FF921FB, 0x50000000 */
|
||||
/// pi/2 - pio2_1
|
||||
const PIO2_1T: f64 = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
|
||||
|
||||
/// Return the remainder of x rem pi/2 in *y
|
||||
///
|
||||
/// use double precision for everything except passing x
|
||||
/// use __rem_pio2_large() for large x
|
||||
#[inline]
|
||||
pub(crate) fn rem_pio2f(x: f32) -> (i32, f64) {
|
||||
let x64 = x as f64;
|
||||
|
||||
let mut tx: [f64; 1] = [0.];
|
||||
let mut ty: [f64; 1] = [0.];
|
||||
|
||||
let ix = x.to_bits() & 0x7fffffff;
|
||||
/* 25+53 bit pi is good enough for medium size */
|
||||
if ix < 0x4dc90fdb {
|
||||
/* |x| ~< 2^28*(pi/2), medium size */
|
||||
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
|
||||
let f_n = x64 * INV_PIO2 + TOINT - TOINT;
|
||||
return (f_n as i32, x64 - f_n * PIO2_1 - f_n * PIO2_1T);
|
||||
}
|
||||
if ix >= 0x7f800000 {
|
||||
/* x is inf or NaN */
|
||||
return (0, x64 - x64);
|
||||
}
|
||||
/* scale x into [2^23, 2^24-1] */
|
||||
let sign = (x.to_bits() >> 31) != 0;
|
||||
let e0 = ((ix >> 23) - (0x7f + 23)) as i32; /* e0 = ilogb(|x|)-23, positive */
|
||||
tx[0] = f32::from_bits(ix - (e0 << 23) as u32) as f64;
|
||||
let n = rem_pio2_large(&tx, &mut ty, e0, 0);
|
||||
if sign {
|
||||
return (-n, -ty[0]);
|
||||
}
|
||||
(n, ty[0])
|
||||
}
|
||||
@@ -1,3 +1,81 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
* i 0
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
* i
|
||||
* -(i+1)
|
||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* With some algebric manipulation, it is not difficult to see
|
||||
* that (2) is equivalent to
|
||||
* -(i+1)
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
*
|
||||
* s = s , y = y ; (4)
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* otherwise,
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
* Together with the remainder, we can decide whether the
|
||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
* (it will never equal to 1/2ulp).
|
||||
* The rounding mode can be detected by checking whether
|
||||
* huge + tiny is equal to huge, and whether huge - tiny is
|
||||
* equal to huge for some floating point number "huge" and "tiny".
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
* sqrt(-ve) = NaN ... with invalid signal
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const TINY: f64 = 1.0e-300;
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
const TINY: f32 = 1.0e-30;
|
||||
|
||||
#[inline]
|
||||
|
||||
Reference in New Issue
Block a user