Merge branch 'master' into master

This commit is contained in:
Jorge Aparicio
2018-07-14 11:30:47 -05:00
committed by GitHub
20 changed files with 1199 additions and 20 deletions

View File

@@ -87,7 +87,6 @@ pub trait F32Ext: private::Sealed {
#[cfg(todo)]
fn sin(self) -> Self;
#[cfg(todo)]
fn cos(self) -> Self;
#[cfg(todo)]
@@ -114,7 +113,6 @@ pub trait F32Ext: private::Sealed {
#[cfg(todo)]
fn exp_m1(self) -> Self;
#[cfg(todo)]
fn ln_1p(self) -> Self;
#[cfg(todo)]
@@ -253,7 +251,6 @@ impl F32Ext for f32 {
sinf(self)
}
#[cfg(todo)]
#[inline]
fn cos(self) -> Self {
cosf(self)
@@ -295,7 +292,6 @@ impl F32Ext for f32 {
expm1f(self)
}
#[cfg(todo)]
#[inline]
fn ln_1p(self) -> Self {
log1pf(self)
@@ -389,10 +385,8 @@ pub trait F64Ext: private::Sealed {
#[cfg(todo)]
fn exp2(self) -> Self;
#[cfg(todo)]
fn ln(self) -> Self;
#[cfg(todo)]
fn log(self, base: Self) -> Self;
fn log2(self) -> Self;
@@ -434,7 +428,6 @@ pub trait F64Ext: private::Sealed {
#[cfg(todo)]
fn exp_m1(self) -> Self;
#[cfg(todo)]
fn ln_1p(self) -> Self;
#[cfg(todo)]
@@ -539,13 +532,11 @@ impl F64Ext for f64 {
exp2(self)
}
#[cfg(todo)]
#[inline]
fn ln(self) -> Self {
log(self)
}
#[cfg(todo)]
#[inline]
fn log(self, base: Self) -> Self {
self.ln() / base.ln()
@@ -620,7 +611,6 @@ impl F64Ext for f64 {
expm1(self)
}
#[cfg(todo)]
#[inline]
fn ln_1p(self) -> Self {
log1p(self)

View File

@@ -0,0 +1,71 @@
use super::{k_cosf, k_sinf, rem_pio2f};
use core::f64::consts::FRAC_PI_2;
/* Small multiples of pi/2 rounded to double precision. */
const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
#[inline]
pub fn cosf(x: f32) -> f32 {
let x64 = x as f64;
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
let mut ix = x.to_bits();
let sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
if ix <= 0x3f490fda {
/* |x| ~<= pi/4 */
if ix < 0x39800000 {
/* |x| < 2**-12 */
/* raise inexact if x != 0 */
force_eval!(x + x1p120);
return 1.;
}
return k_cosf(x64);
}
if ix <= 0x407b53d1 {
/* |x| ~<= 5*pi/4 */
if ix > 0x4016cbe3 {
/* |x| ~> 3*pi/4 */
return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 });
} else {
if sign {
return k_sinf(x64 + C1_PIO2);
} else {
return k_sinf(C1_PIO2 - x64);
}
}
}
if ix <= 0x40e231d5 {
/* |x| ~<= 9*pi/4 */
if ix > 0x40afeddf {
/* |x| ~> 7*pi/4 */
return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 });
} else {
if sign {
return k_sinf(-x64 - C3_PIO2);
} else {
return k_sinf(x64 - C3_PIO2);
}
}
}
/* cos(Inf or NaN) is NaN */
if ix >= 0x7f800000 {
return x - x;
}
/* general argument reduction needed */
let (n, y) = rem_pio2f(x);
match n & 3 {
0 => k_cosf(y),
1 => k_sinf(-y),
2 => -k_cosf(y),
_ => k_sinf(y),
}
}

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use super::scalbnf;
const HALF: [f32; 2] = [0.5, -0.5];

View File

@@ -0,0 +1,13 @@
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */
const C1: f64 = 0.0416666233237390631894; /* 0x155553e1053a42.0p-57 */
const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */
const C3: f64 = 0.0000243904487962774090654; /* 0x199342e0ee5069.0p-68 */
#[inline]
pub(crate) fn k_cosf(x: f64) -> f32 {
let z = x * x;
let w = z * z;
let r = C2 + z * C3;
(((1.0 + z * C0) + w * C1) + (w * z) * r) as f32
}

View File

@@ -0,0 +1,14 @@
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */
const S2: f64 = 0.0083333293858894631756; /* 0x111110896efbb2.0p-59 */
const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */
const S4: f64 = 0.0000027183114939898219064; /* 0x16cd878c3b46a7.0p-71 */
#[inline]
pub(crate) fn k_sinf(x: f64) -> f32 {
let z = x * x;
let w = z * z;
let r = S3 + z * S4;
let s = z * x;
((x + s * (S1 + z * S2)) + s * w * r) as f32
}

View File

@@ -0,0 +1,117 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* log(x)
* Return the logarithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Remez algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
#[inline]
pub fn log(mut x: f64) -> f64 {
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
let mut ui = x.to_bits();
let mut hx: u32 = (ui >> 32) as u32;
let mut k: i32 = 0;
if (hx < 0x00100000) || ((hx >> 31) != 0) {
/* x < 2**-126 */
if ui << 1 == 0 {
return -1. / (x * x); /* log(+-0)=-inf */
}
if hx >> 31 != 0 {
return (x - x) / 0.0; /* log(-#) = NaN */
}
/* subnormal number, scale x up */
k -= 54;
x *= x1p54;
ui = x.to_bits();
hx = (ui >> 32) as u32;
} else if hx >= 0x7ff00000 {
return x;
} else if hx == 0x3ff00000 && ui << 32 == 0 {
return 0.;
}
/* reduce x into [sqrt(2)/2, sqrt(2)] */
hx += 0x3ff00000 - 0x3fe6a09e;
k += ((hx >> 20) as i32) - 0x3ff;
hx = (hx & 0x000fffff) + 0x3fe6a09e;
ui = ((hx as u64) << 32) | (ui & 0xffffffff);
x = f64::from_bits(ui);
let f: f64 = x - 1.0;
let hfsq: f64 = 0.5 * f * f;
let s: f64 = f / (2.0 + f);
let z: f64 = s * s;
let w: f64 = z * z;
let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
let r: f64 = t2 + t1;
let dk: f64 = k as f64;
return s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI;
}

View File

@@ -1,3 +1,22 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* Return the base 10 logarithm of x. See log.c for most comments.
*
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
* as in log.c, then combine and scale in extra precision:
* log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
*/
use core::f64;
const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in log10.c.
*/
use core::f32;
const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */

View File

@@ -0,0 +1,142 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double log1p(double x)
* Return the natural logarithm of 1+x.
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log(1+f): See log.c
*
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
use core::f64;
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
pub fn log1p(x: f64) -> f64 {
let mut ui: u64 = x.to_bits();
let hfsq: f64;
let mut f: f64 = 0.;
let mut c: f64 = 0.;
let s: f64;
let z: f64;
let r: f64;
let w: f64;
let t1: f64;
let t2: f64;
let dk: f64;
let hx: u32;
let mut hu: u32;
let mut k: i32;
hx = (ui >> 32) as u32;
k = 1;
if hx < 0x3fda827a || (hx >> 31) > 0 {
/* 1+x < sqrt(2)+ */
if hx >= 0xbff00000 {
/* x <= -1.0 */
if x == -1. {
return x / 0.0; /* log1p(-1) = -inf */
}
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
}
if hx << 1 < 0x3ca00000 << 1 {
/* |x| < 2**-53 */
/* underflow if subnormal */
if (hx & 0x7ff00000) == 0 {
force_eval!(x as f32);
}
return x;
}
if hx <= 0xbfd2bec4 {
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0.;
f = x;
}
} else if hx >= 0x7ff00000 {
return x;
}
if k > 0 {
ui = (1. + x).to_bits();
hu = (ui >> 32) as u32;
hu += 0x3ff00000 - 0x3fe6a09e;
k = (hu >> 20) as i32 - 0x3ff;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if k < 54 {
c = if k >= 2 {
1. - (f64::from_bits(ui) - x)
} else {
x - (f64::from_bits(ui) - 1.)
};
c /= f64::from_bits(ui);
} else {
c = 0.;
}
/* reduce u into [sqrt(2)/2, sqrt(2)] */
hu = (hu & 0x000fffff) + 0x3fe6a09e;
ui = (hu as u64) << 32 | (ui & 0xffffffff);
f = f64::from_bits(ui) - 1.;
}
hfsq = 0.5 * f * f;
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (LG2 + w * (LG4 + w * LG6));
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
r = t2 + t1;
dk = k as f64;
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
}

View File

@@ -0,0 +1,97 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use core::f32;
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
pub fn log1pf(x: f32) -> f32 {
let mut ui: u32 = x.to_bits();
let hfsq: f32;
let mut f: f32 = 0.;
let mut c: f32 = 0.;
let s: f32;
let z: f32;
let r: f32;
let w: f32;
let t1: f32;
let t2: f32;
let dk: f32;
let ix: u32;
let mut iu: u32;
let mut k: i32;
ix = ui;
k = 1;
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
/* 1+x < sqrt(2)+ */
if ix >= 0xbf800000 {
/* x <= -1.0 */
if x == -1. {
return x / 0.0; /* log1p(-1)=+inf */
}
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
}
if ix << 1 < 0x33800000 << 1 {
/* |x| < 2**-24 */
/* underflow if subnormal */
if (ix & 0x7f800000) == 0 {
force_eval!(x * x);
}
return x;
}
if ix <= 0xbe95f619 {
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0.;
f = x;
}
} else if ix >= 0x7f800000 {
return x;
}
if k > 0 {
ui = (1. + x).to_bits();
iu = ui;
iu += 0x3f800000 - 0x3f3504f3;
k = (iu >> 23) as i32 - 0x7f;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if k < 25 {
c = if k >= 2 {
1. - (f32::from_bits(ui) - x)
} else {
x - (f32::from_bits(ui) - 1.)
};
c /= f32::from_bits(ui);
} else {
c = 0.;
}
/* reduce u into [sqrt(2)/2, sqrt(2)] */
iu = (iu & 0x007fffff) + 0x3f3504f3;
ui = iu;
f = f32::from_bits(ui) - 1.;
}
s = f / (2.0 + f);
z = s * s;
w = z * z;
t1 = w * (LG2 + w * LG4);
t2 = z * (LG1 + w * LG3);
r = t2 + t1;
hfsq = 0.5 * f * f;
dk = k as f32;
return s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI;
}

View File

@@ -1,3 +1,22 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* Return the base 2 logarithm of x. See log.c for most comments.
*
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
* as in log.c, then combine and scale in extra precision:
* log2(x) = (f - f*f/2 + r)/log(2) + k
*/
use core::f64;
const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in log2.c.
*/
use core::f32;
const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_logf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */

View File

@@ -7,6 +7,7 @@ macro_rules! force_eval {
}
mod ceilf;
mod cosf;
mod expf;
mod fabs;
mod fabsf;
@@ -16,8 +17,11 @@ mod fmod;
mod fmodf;
mod hypot;
mod hypotf;
mod log;
mod log10;
mod log10f;
mod log1p;
mod log1pf;
mod log2;
mod log2f;
mod logf;
@@ -31,11 +35,39 @@ mod sqrtf;
mod trunc;
mod truncf;
//mod service;
// Use separated imports instead of {}-grouped imports for easier merging.
pub use self::ceilf::ceilf;
pub use self::cosf::cosf;
pub use self::expf::expf;
pub use self::fabs::fabs;
pub use self::fabsf::fabsf;
pub use self::floor::floor;
pub use self::floorf::floorf;
pub use self::fmod::fmod;
pub use self::fmodf::fmodf;
pub use self::hypot::hypot;
pub use self::hypotf::hypotf;
pub use self::log::log;
pub use self::log10::log10;
pub use self::log10f::log10f;
pub use self::log1p::log1p;
pub use self::log1pf::log1pf;
pub use self::log2::log2;
pub use self::log2f::log2f;
pub use self::logf::logf;
pub use self::powf::powf;
pub use self::round::round;
pub use self::roundf::roundf;
pub use self::scalbn::scalbn;
pub use self::scalbnf::scalbnf;
pub use self::sqrt::sqrt;
pub use self::sqrtf::sqrtf;
pub use self::trunc::trunc;
pub use self::truncf::truncf;
pub use self::{
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmod::fmod,
fmodf::fmodf, hypot::hypot, hypotf::hypotf, log10::log10, log10f::log10f, log2::log2,
log2f::log2f, logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn,
scalbnf::scalbnf, sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
};
mod k_cosf;
mod k_sinf;
mod rem_pio2_large;
mod rem_pio2f;
use self::{k_cosf::k_cosf, k_sinf::k_sinf, rem_pio2_large::rem_pio2_large, rem_pio2f::rem_pio2f};

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use super::{fabsf, scalbnf, sqrtf};
const BP: [f32; 2] = [1.0, 1.5];

View File

@@ -0,0 +1,450 @@
use super::floor;
use super::scalbn;
// initial value for jk
const INIT_JK: [usize; 4] = [3, 4, 4, 6];
// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
//
// integer array, contains the (24*i)-th to (24*i+23)-th
// bit of 2/pi after binary point. The corresponding
// floating value is
//
// ipio2[i] * 2^(-24(i+1)).
//
// NB: This table must have at least (e0-3)/24 + jk terms.
// For quad precision (e0 <= 16360, jk = 6), this is 686.
#[cfg(target_pointer_width = "32")]
const IPIO2: [i32; 66] = [
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
0x73A8C9, 0x60E27B, 0xC08C6B,
];
#[cfg(target_pointer_width = "64")]
const IPIO2: [i32; 690] = [
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163,
0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C,
0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292,
0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
0x73A8C9, 0x60E27B, 0xC08C6B, 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB, 0xC33D26,
0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B,
0x006233, 0x7CD2B4, 0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324, 0x778AD6, 0x23545A,
0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2,
0xE88628, 0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 0xD36710, 0xD8DDAA, 0x425FAE,
0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2,
0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593,
0x3E71C1, 0xB3092E, 0xF3450B, 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2, 0x973199,
0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD,
0xA67DF7, 0x72486E, 0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D, 0x324832, 0x754C5B,
0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C,
0xBEA404, 0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 0x3BDF08, 0x2B3715, 0xA0805C,
0x93805A, 0x921110, 0xD8E80F, 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364,
0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6,
0xA5CA4E, 0xCD37A7, 0x36A9E6, 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657, 0x3AFF47,
0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B,
0xCD785B, 0x76F923, 0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886, 0xA05DF7, 0xF480C6,
0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA,
0xFEDB89, 0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 0x48D784, 0x16DF30, 0x432DC7,
0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D,
0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B,
0xBD17AB, 0x81A2CA, 0x5C6A08, 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A, 0x5AC44F,
0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E,
0xC37295, 0x3B06A3, 0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA, 0x461846, 0x5F7555,
0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD,
0x7B723E, 0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 0xBEFDFD, 0xEF4556, 0x367ED9,
0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD,
0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0,
0x96190B, 0xB8701A, 0x649569, 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1, 0xC68351,
0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51,
0xB13399, 0x0ED7A9, 0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E, 0xA4677B, 0x7AACBA,
0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385,
0x3B8621, 0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 0xB1933D, 0x0B7CBD, 0xDC51A4,
0x63DD27, 0xDDE169, 0x19949A, 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5,
0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
];
const PIO2: [f64; 8] = [
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
];
// fn rem_pio2_large(x : &[f64], y : &mut [f64], e0 : i32, prec : usize) -> i32
//
// Input parameters:
// x[] The input value (must be positive) is broken into nx
// pieces of 24-bit integers in double precision format.
// x[i] will be the i-th 24 bit of x. The scaled exponent
// of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
// match x's up to 24 bits.
//
// Example of breaking a double positive z into x[0]+x[1]+x[2]:
// e0 = ilogb(z)-23
// z = scalbn(z,-e0)
// for i = 0,1,2
// x[i] = floor(z)
// z = (z-x[i])*2**24
//
// y[] ouput result in an array of double precision numbers.
// The dimension of y[] is:
// 24-bit precision 1
// 53-bit precision 2
// 64-bit precision 2
// 113-bit precision 3
// The actual value is the sum of them. Thus for 113-bit
// precison, one may have to do something like:
//
// long double t,w,r_head, r_tail;
// t = (long double)y[2] + (long double)y[1];
// w = (long double)y[0];
// r_head = t+w;
// r_tail = w - (r_head - t);
//
// e0 The exponent of x[0]. Must be <= 16360 or you need to
// expand the ipio2 table.
//
// prec an integer indicating the precision:
// 0 24 bits (single)
// 1 53 bits (double)
// 2 64 bits (extended)
// 3 113 bits (quad)
//
// Here is the description of some local variables:
//
// jk jk+1 is the initial number of terms of ipio2[] needed
// in the computation. The minimum and recommended value
// for jk is 3,4,4,6 for single, double, extended, and quad.
// jk+1 must be 2 larger than you might expect so that our
// recomputation test works. (Up to 24 bits in the integer
// part (the 24 bits of it that we compute) and 23 bits in
// the fraction part may be lost to cancelation before we
// recompute.)
//
// jz local integer variable indicating the number of
// terms of ipio2[] used.
//
// jx nx - 1
//
// jv index for pointing to the suitable ipio2[] for the
// computation. In general, we want
// ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
// is an integer. Thus
// e0-3-24*jv >= 0 or (e0-3)/24 >= jv
// Hence jv = max(0,(e0-3)/24).
//
// jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
//
// q[] double array with integral value, representing the
// 24-bits chunk of the product of x and 2/pi.
//
// q0 the corresponding exponent of q[0]. Note that the
// exponent for q[i] would be q0-24*i.
//
// PIo2[] double precision array, obtained by cutting pi/2
// into 24 bits chunks.
//
// f[] ipio2[] in floating point
//
// iq[] integer array by breaking up q[] in 24-bits chunk.
//
// fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
//
// ih integer. If >0 it indicates q[] is >= 0.5, hence
// it also indicates the *sign* of the result.
/// Return the last three digits of N with y = x - N*pi/2
/// so that |y| < pi/2.
///
/// The method is to compute the integer (mod 8) and fraction parts of
/// (2/pi)*x without doing the full multiplication. In general we
/// skip the part of the product that are known to be a huge integer (
/// more accurately, = 0 mod 8 ). Thus the number of operations are
/// independent of the exponent of the input.
#[inline]
pub(crate) fn rem_pio2_large(x: &[f64], y: &mut [f64], e0: i32, prec: usize) -> i32 {
let x1p24 = f64::from_bits(0x4170000000000000); // 0x1p24 === 2 ^ 24
let x1p_24 = f64::from_bits(0x3e70000000000000); // 0x1p_24 === 2 ^ (-24)
#[cfg(target_pointer_width = "64")]
assert!(e0 <= 16360);
let nx = x.len();
let mut fw: f64;
let mut n: i32;
let mut ih: i32;
let mut z: f64;
let mut f: [f64; 20] = [0.; 20];
let mut fq: [f64; 20] = [0.; 20];
let mut q: [f64; 20] = [0.; 20];
let mut iq: [i32; 20] = [0; 20];
/* initialize jk*/
let jk = INIT_JK[prec];
let jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
let jx = nx - 1;
let mut jv = (e0 - 3) / 24;
if jv < 0 {
jv = 0;
}
let mut q0 = e0 - 24 * (jv + 1);
let jv = jv as usize;
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
let mut j = (jv - jx) as i32;
let m = jx + jk;
for i in 0..=m {
f[i] = if j < 0 { 0. } else { IPIO2[j as usize] as f64 };
j += 1
}
/* compute q[0],q[1],...q[jk] */
for i in 0..=jk {
fw = 0f64;
for j in 0..=jx {
fw += x[j] * f[jx + i - j];
}
q[i] = fw;
}
let mut jz = jk;
'recompute: loop {
/* distill q[] into iq[] reversingly */
let mut i = 0i32;
z = q[jz];
for j in (1..=jz).rev() {
fw = (x1p_24 * z) as i32 as f64;
iq[i as usize] = (z - x1p24 * fw) as i32;
z = q[j - 1] + fw;
i += 1;
}
/* compute n */
z = scalbn(z, q0); /* actual value of z */
z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
n = z as i32;
z -= n as f64;
ih = 0;
if q0 > 0 {
/* need iq[jz-1] to determine n */
i = iq[jz - 1] >> (24 - q0);
n += i;
iq[jz - 1] -= i << (24 - q0);
ih = iq[jz - 1] >> (23 - q0);
} else if q0 == 0 {
ih = iq[jz - 1] >> 23;
} else if z >= 0.5 {
ih = 2;
}
if ih > 0 {
/* q > 0.5 */
n += 1;
let mut carry = 0i32;
for i in 0..jz {
/* compute 1-q */
let j = iq[i];
if carry == 0 {
if j != 0 {
carry = 1;
iq[i] = 0x1000000 - j;
}
} else {
iq[i] = 0xffffff - j;
}
}
if q0 > 0 {
/* rare case: chance is 1 in 12 */
match q0 {
1 => {
iq[jz - 1] &= 0x7fffff;
}
2 => {
iq[jz - 1] &= 0x3fffff;
}
_ => {}
}
}
if ih == 2 {
z = 1. - z;
if carry != 0 {
z -= scalbn(1., q0);
}
}
}
/* check if recomputation is needed */
if z == 0. {
let mut j = 0;
for i in (jk..=jz - 1).rev() {
j |= iq[i];
}
if j == 0 {
/* need recomputation */
let mut k = 1;
while iq[jk - k] == 0 {
k += 1; /* k = no. of terms needed */
}
for i in (jz + 1)..=(jz + k) {
/* add q[jz+1] to q[jz+k] */
f[jx + i] = IPIO2[jv + i] as f64;
fw = 0f64;
for j in 0..=jx {
fw += x[j] * f[jx + i - j];
}
q[i] = fw;
}
jz += k;
continue 'recompute;
}
}
break;
}
/* chop off zero terms */
if z == 0. {
jz -= 1;
q0 -= 24;
while iq[jz] == 0 {
jz -= 1;
q0 -= 24;
}
} else {
/* break z into 24-bit if necessary */
z = scalbn(z, -q0);
if z >= x1p24 {
fw = (x1p_24 * z) as i32 as f64;
iq[jz] = (z - x1p24 * fw) as i32;
jz += 1;
q0 += 24;
iq[jz] = fw as i32;
} else {
iq[jz] = z as i32;
}
}
/* convert integer "bit" chunk to floating-point value */
fw = scalbn(1., q0);
for i in (0..=jz).rev() {
q[i] = fw * (iq[i] as f64);
fw *= x1p_24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for i in (0..=jz).rev() {
fw = 0f64;
let mut k = 0;
while (k <= jp) && (k <= jz - i) {
fw += PIO2[k] * q[i + k];
k += 1;
}
fq[jz - i] = fw;
}
/* compress fq[] into y[] */
match prec {
0 => {
fw = 0f64;
for i in (0..=jz).rev() {
fw += fq[i];
}
y[0] = if ih == 0 { fw } else { -fw };
}
1 | 2 => {
fw = 0f64;
for i in (0..=jz).rev() {
fw += fq[i];
}
// TODO: drop excess precision here once double_t is used
fw = fw as f64;
y[0] = if ih == 0 { fw } else { -fw };
fw = fq[0] - fw;
for i in 1..=jz {
fw += fq[i];
}
y[1] = if ih == 0 { fw } else { -fw };
}
3 => {
/* painful */
for i in (1..=jz).rev() {
fw = fq[i - 1] + fq[i];
fq[i] += fq[i - 1] - fw;
fq[i - 1] = fw;
}
for i in (2..=jz).rev() {
fw = fq[i - 1] + fq[i];
fq[i] += fq[i - 1] - fw;
fq[i - 1] = fw;
}
fw = 0f64;
for i in (2..=jz).rev() {
fw += fq[i];
}
if ih == 0 {
y[0] = fq[0];
y[1] = fq[1];
y[2] = fw;
} else {
y[0] = -fq[0];
y[1] = -fq[1];
y[2] = -fw;
}
}
_ => unreachable!(),
}
n & 7
}

View File

@@ -0,0 +1,46 @@
use super::rem_pio2_large;
use core::f64;
const TOINT: f64 = 1.5 / f64::EPSILON;
/// 53 bits of 2/pi
const INV_PIO2: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
/// first 25 bits of pi/2
const PIO2_1: f64 = 1.57079631090164184570e+00; /* 0x3FF921FB, 0x50000000 */
/// pi/2 - pio2_1
const PIO2_1T: f64 = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
/// Return the remainder of x rem pi/2 in *y
///
/// use double precision for everything except passing x
/// use __rem_pio2_large() for large x
#[inline]
pub(crate) fn rem_pio2f(x: f32) -> (i32, f64) {
let x64 = x as f64;
let mut tx: [f64; 1] = [0.];
let mut ty: [f64; 1] = [0.];
let ix = x.to_bits() & 0x7fffffff;
/* 25+53 bit pi is good enough for medium size */
if ix < 0x4dc90fdb {
/* |x| ~< 2^28*(pi/2), medium size */
/* Use a specialized rint() to get fn. Assume round-to-nearest. */
let f_n = x64 * INV_PIO2 + TOINT - TOINT;
return (f_n as i32, x64 - f_n * PIO2_1 - f_n * PIO2_1T);
}
if ix >= 0x7f800000 {
/* x is inf or NaN */
return (0, x64 - x64);
}
/* scale x into [2^23, 2^24-1] */
let sign = (x.to_bits() >> 31) != 0;
let e0 = ((ix >> 23) - (0x7f + 23)) as i32; /* e0 = ilogb(|x|)-23, positive */
tx[0] = f32::from_bits(ix - (e0 << 23) as u32) as f64;
let n = rem_pio2_large(&tx, &mut ty, e0, 0);
if sign {
return (-n, -ty[0]);
}
(n, ty[0])
}

View File

@@ -1,3 +1,81 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*/
use core::f64;
const TINY: f64 = 1.0e-300;

View File

@@ -1,3 +1,18 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
const TINY: f32 = 1.0e-30;
#[inline]