Rename rustc_mir to rustc_const_eval.

This commit is contained in:
Camille GILLOT
2021-01-05 20:08:11 +01:00
parent fd9c04fe32
commit c5fc2609f0
64 changed files with 66 additions and 66 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,135 @@
//! Check the bodies of `const`s, `static`s and `const fn`s for illegal operations.
//!
//! This module will eventually replace the parts of `qualify_consts.rs` that check whether a local
//! has interior mutability or needs to be dropped, as well as the visitor that emits errors when
//! it finds operations that are invalid in a certain context.
use rustc_attr as attr;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::mir;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::{sym, Symbol};
pub use self::qualifs::Qualif;
pub mod check;
mod ops;
pub mod post_drop_elaboration;
pub mod qualifs;
mod resolver;
/// Information about the item currently being const-checked, as well as a reference to the global
/// context.
pub struct ConstCx<'mir, 'tcx> {
pub body: &'mir mir::Body<'tcx>,
pub tcx: TyCtxt<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
pub const_kind: Option<hir::ConstContext>,
}
impl ConstCx<'mir, 'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, body: &'mir mir::Body<'tcx>) -> Self {
let def_id = body.source.def_id().expect_local();
let param_env = tcx.param_env(def_id);
Self::new_with_param_env(tcx, body, param_env)
}
pub fn new_with_param_env(
tcx: TyCtxt<'tcx>,
body: &'mir mir::Body<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Self {
let const_kind = tcx.hir().body_const_context(body.source.def_id().expect_local());
ConstCx { body, tcx, param_env, const_kind }
}
pub fn def_id(&self) -> LocalDefId {
self.body.source.def_id().expect_local()
}
/// Returns the kind of const context this `Item` represents (`const`, `static`, etc.).
///
/// Panics if this `Item` is not const.
pub fn const_kind(&self) -> hir::ConstContext {
self.const_kind.expect("`const_kind` must not be called on a non-const fn")
}
pub fn is_const_stable_const_fn(&self) -> bool {
self.const_kind == Some(hir::ConstContext::ConstFn)
&& self.tcx.features().staged_api
&& is_const_stable_const_fn(self.tcx, self.def_id().to_def_id())
}
/// Returns the function signature of the item being const-checked if it is a `fn` or `const fn`.
pub fn fn_sig(&self) -> Option<&'tcx hir::FnSig<'tcx>> {
// Get this from the HIR map instead of a query to avoid cycle errors.
//
// FIXME: Is this still an issue?
let hir_map = self.tcx.hir();
let hir_id = hir_map.local_def_id_to_hir_id(self.def_id());
hir_map.fn_sig_by_hir_id(hir_id)
}
}
/// Returns `true` if this `DefId` points to one of the official `panic` lang items.
pub fn is_lang_panic_fn(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
// We can allow calls to these functions because `hook_panic_fn` in
// `const_eval/machine.rs` ensures the calls are handled specially.
// Keep in sync with what that function handles!
Some(def_id) == tcx.lang_items().panic_fn()
|| Some(def_id) == tcx.lang_items().panic_str()
|| Some(def_id) == tcx.lang_items().begin_panic_fn()
|| Some(def_id) == tcx.lang_items().panic_fmt()
|| Some(def_id) == tcx.lang_items().begin_panic_fmt()
}
pub fn rustc_allow_const_fn_unstable(
tcx: TyCtxt<'tcx>,
def_id: DefId,
feature_gate: Symbol,
) -> bool {
let attrs = tcx.get_attrs(def_id);
attr::rustc_allow_const_fn_unstable(&tcx.sess, attrs).any(|name| name == feature_gate)
}
// Returns `true` if the given `const fn` is "const-stable".
//
// Panics if the given `DefId` does not refer to a `const fn`.
//
// Const-stability is only relevant for `const fn` within a `staged_api` crate. Only "const-stable"
// functions can be called in a const-context by users of the stable compiler. "const-stable"
// functions are subject to more stringent restrictions than "const-unstable" functions: They
// cannot use unstable features and can only call other "const-stable" functions.
pub fn is_const_stable_const_fn(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
use attr::{ConstStability, Stability, StabilityLevel};
// A default body marked const is not const-stable because const
// trait fns currently cannot be const-stable. We shouldn't
// restrict default bodies to only call const-stable functions.
if tcx.has_attr(def_id, sym::default_method_body_is_const) {
return false;
}
// Const-stability is only relevant for `const fn`.
assert!(tcx.is_const_fn_raw(def_id));
// Functions with `#[rustc_const_unstable]` are const-unstable.
match tcx.lookup_const_stability(def_id) {
Some(ConstStability { level: StabilityLevel::Unstable { .. }, .. }) => return false,
Some(ConstStability { level: StabilityLevel::Stable { .. }, .. }) => return true,
None => {}
}
// Functions with `#[unstable]` are const-unstable.
//
// FIXME(ecstaticmorse): We should keep const-stability attributes wholly separate from normal stability
// attributes. `#[unstable]` should be irrelevant.
if let Some(Stability { level: StabilityLevel::Unstable { .. }, .. }) =
tcx.lookup_stability(def_id)
{
return false;
}
true
}

View File

@@ -0,0 +1,628 @@
//! Concrete error types for all operations which may be invalid in a certain const context.
use rustc_errors::{struct_span_err, DiagnosticBuilder};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::mir;
use rustc_session::parse::feature_err;
use rustc_span::symbol::sym;
use rustc_span::{Span, Symbol};
use super::ConstCx;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Status {
Allowed,
Unstable(Symbol),
Forbidden,
}
#[derive(Clone, Copy)]
pub enum DiagnosticImportance {
/// An operation that must be removed for const-checking to pass.
Primary,
/// An operation that causes const-checking to fail, but is usually a side-effect of a `Primary` operation elsewhere.
Secondary,
}
/// An operation that is not *always* allowed in a const context.
pub trait NonConstOp: std::fmt::Debug {
/// Returns an enum indicating whether this operation is allowed within the given item.
fn status_in_item(&self, _ccx: &ConstCx<'_, '_>) -> Status {
Status::Forbidden
}
fn importance(&self) -> DiagnosticImportance {
DiagnosticImportance::Primary
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx>;
}
#[derive(Debug)]
pub struct FloatingPointOp;
impl NonConstOp for FloatingPointOp {
fn status_in_item(&self, ccx: &ConstCx<'_, '_>) -> Status {
if ccx.const_kind() == hir::ConstContext::ConstFn {
Status::Unstable(sym::const_fn_floating_point_arithmetic)
} else {
Status::Allowed
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_fn_floating_point_arithmetic,
span,
&format!("floating point arithmetic is not allowed in {}s", ccx.const_kind()),
)
}
}
/// A function call where the callee is a pointer.
#[derive(Debug)]
pub struct FnCallIndirect;
impl NonConstOp for FnCallIndirect {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
ccx.tcx.sess.struct_span_err(span, "function pointers are not allowed in const fn")
}
}
/// A function call where the callee is not marked as `const`.
#[derive(Debug)]
pub struct FnCallNonConst;
impl NonConstOp for FnCallNonConst {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
struct_span_err!(
ccx.tcx.sess,
span,
E0015,
"calls in {}s are limited to constant functions, \
tuple structs and tuple variants",
ccx.const_kind(),
)
}
}
/// A call to an `#[unstable]` const fn or `#[rustc_const_unstable]` function.
///
/// Contains the name of the feature that would allow the use of this function.
#[derive(Debug)]
pub struct FnCallUnstable(pub DefId, pub Option<Symbol>);
impl NonConstOp for FnCallUnstable {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let FnCallUnstable(def_id, feature) = *self;
let mut err = ccx.tcx.sess.struct_span_err(
span,
&format!("`{}` is not yet stable as a const fn", ccx.tcx.def_path_str(def_id)),
);
if ccx.is_const_stable_const_fn() {
err.help("Const-stable functions can only call other const-stable functions");
} else if ccx.tcx.sess.is_nightly_build() {
if let Some(feature) = feature {
err.help(&format!(
"add `#![feature({})]` to the crate attributes to enable",
feature
));
}
}
err
}
}
#[derive(Debug)]
pub struct FnPtrCast;
impl NonConstOp for FnPtrCast {
fn status_in_item(&self, ccx: &ConstCx<'_, '_>) -> Status {
if ccx.const_kind() != hir::ConstContext::ConstFn {
Status::Allowed
} else {
Status::Unstable(sym::const_fn_fn_ptr_basics)
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_fn_fn_ptr_basics,
span,
&format!("function pointer casts are not allowed in {}s", ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct Generator(pub hir::GeneratorKind);
impl NonConstOp for Generator {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
if let hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) = self.0 {
Status::Unstable(sym::const_async_blocks)
} else {
Status::Forbidden
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let msg = format!("{}s are not allowed in {}s", self.0, ccx.const_kind());
if let hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) = self.0 {
feature_err(&ccx.tcx.sess.parse_sess, sym::const_async_blocks, span, &msg)
} else {
ccx.tcx.sess.struct_span_err(span, &msg)
}
}
}
#[derive(Debug)]
pub struct HeapAllocation;
impl NonConstOp for HeapAllocation {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
ccx.tcx.sess,
span,
E0010,
"allocations are not allowed in {}s",
ccx.const_kind()
);
err.span_label(span, format!("allocation not allowed in {}s", ccx.const_kind()));
if ccx.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"The value of statics and constants must be known at compile time, \
and they live for the entire lifetime of a program. Creating a boxed \
value allocates memory on the heap at runtime, and therefore cannot \
be done at compile time.",
);
}
err
}
}
#[derive(Debug)]
pub struct InlineAsm;
impl NonConstOp for InlineAsm {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
struct_span_err!(
ccx.tcx.sess,
span,
E0015,
"inline assembly is not allowed in {}s",
ccx.const_kind()
)
}
}
#[derive(Debug)]
pub struct LiveDrop {
pub dropped_at: Option<Span>,
}
impl NonConstOp for LiveDrop {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
ccx.tcx.sess,
span,
E0493,
"destructors cannot be evaluated at compile-time"
);
err.span_label(span, format!("{}s cannot evaluate destructors", ccx.const_kind()));
if let Some(span) = self.dropped_at {
err.span_label(span, "value is dropped here");
}
err
}
}
#[derive(Debug)]
/// A borrow of a type that contains an `UnsafeCell` somewhere. The borrow never escapes to
/// the final value of the constant.
pub struct TransientCellBorrow;
impl NonConstOp for TransientCellBorrow {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_refs_to_cell)
}
fn importance(&self) -> DiagnosticImportance {
// The cases that cannot possibly work will already emit a `CellBorrow`, so we should
// not additionally emit a feature gate error if activating the feature gate won't work.
DiagnosticImportance::Secondary
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_refs_to_cell,
span,
"cannot borrow here, since the borrowed element may contain interior mutability",
)
}
}
#[derive(Debug)]
/// A borrow of a type that contains an `UnsafeCell` somewhere. The borrow might escape to
/// the final value of the constant, and thus we cannot allow this (for now). We may allow
/// it in the future for static items.
pub struct CellBorrow;
impl NonConstOp for CellBorrow {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
ccx.tcx.sess,
span,
E0492,
"{}s cannot refer to interior mutable data",
ccx.const_kind(),
);
err.span_label(
span,
"this borrow of an interior mutable value may end up in the final value",
);
if let hir::ConstContext::Static(_) = ccx.const_kind() {
err.help(
"to fix this, the value can be extracted to a separate \
`static` item and then referenced",
);
}
if ccx.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"A constant containing interior mutable data behind a reference can allow you
to modify that data. This would make multiple uses of a constant to be able to
see different values and allow circumventing the `Send` and `Sync` requirements
for shared mutable data, which is unsound.",
);
}
err
}
}
#[derive(Debug)]
/// This op is for `&mut` borrows in the trailing expression of a constant
/// which uses the "enclosing scopes rule" to leak its locals into anonymous
/// static or const items.
pub struct MutBorrow(pub hir::BorrowKind);
impl NonConstOp for MutBorrow {
fn status_in_item(&self, _ccx: &ConstCx<'_, '_>) -> Status {
Status::Forbidden
}
fn importance(&self) -> DiagnosticImportance {
// If there were primary errors (like non-const function calls), do not emit further
// errors about mutable references.
DiagnosticImportance::Secondary
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let raw = match self.0 {
hir::BorrowKind::Raw => "raw ",
hir::BorrowKind::Ref => "",
};
let mut err = struct_span_err!(
ccx.tcx.sess,
span,
E0764,
"{}mutable references are not allowed in the final value of {}s",
raw,
ccx.const_kind(),
);
if ccx.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"References in statics and constants may only refer \
to immutable values.\n\n\
Statics are shared everywhere, and if they refer to \
mutable data one might violate memory safety since \
holding multiple mutable references to shared data \
is not allowed.\n\n\
If you really want global mutable state, try using \
static mut or a global UnsafeCell.",
);
}
err
}
}
#[derive(Debug)]
pub struct TransientMutBorrow(pub hir::BorrowKind);
impl NonConstOp for TransientMutBorrow {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_mut_refs)
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let raw = match self.0 {
hir::BorrowKind::Raw => "raw ",
hir::BorrowKind::Ref => "",
};
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_mut_refs,
span,
&format!("{}mutable references are not allowed in {}s", raw, ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct MutDeref;
impl NonConstOp for MutDeref {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_mut_refs)
}
fn importance(&self) -> DiagnosticImportance {
// Usually a side-effect of a `TransientMutBorrow` somewhere.
DiagnosticImportance::Secondary
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_mut_refs,
span,
&format!("mutation through a reference is not allowed in {}s", ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct Panic;
impl NonConstOp for Panic {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_panic)
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_panic,
span,
&format!("panicking in {}s is unstable", ccx.const_kind()),
)
}
}
/// A call to a `panic()` lang item where the first argument is _not_ a `&str`.
#[derive(Debug)]
pub struct PanicNonStr;
impl NonConstOp for PanicNonStr {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
ccx.tcx.sess.struct_span_err(
span,
"argument to `panic!()` in a const context must have type `&str`",
)
}
}
/// Comparing raw pointers for equality.
/// Not currently intended to ever be allowed, even behind a feature gate: operation depends on
/// allocation base addresses that are not known at compile-time.
#[derive(Debug)]
pub struct RawPtrComparison;
impl NonConstOp for RawPtrComparison {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = ccx
.tcx
.sess
.struct_span_err(span, "pointers cannot be reliably compared during const eval.");
err.note(
"see issue #53020 <https://github.com/rust-lang/rust/issues/53020> \
for more information",
);
err
}
}
#[derive(Debug)]
pub struct RawPtrDeref;
impl NonConstOp for RawPtrDeref {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_raw_ptr_deref)
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_raw_ptr_deref,
span,
&format!("dereferencing raw pointers in {}s is unstable", ccx.const_kind(),),
)
}
}
/// Casting raw pointer or function pointer to an integer.
/// Not currently intended to ever be allowed, even behind a feature gate: operation depends on
/// allocation base addresses that are not known at compile-time.
#[derive(Debug)]
pub struct RawPtrToIntCast;
impl NonConstOp for RawPtrToIntCast {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = ccx
.tcx
.sess
.struct_span_err(span, "pointers cannot be cast to integers during const eval.");
err.note("at compile-time, pointers do not have an integer value");
err.note(
"avoiding this restriction via `transmute`, `union`, or raw pointers leads to compile-time undefined behavior",
);
err
}
}
/// An access to a (non-thread-local) `static`.
#[derive(Debug)]
pub struct StaticAccess;
impl NonConstOp for StaticAccess {
fn status_in_item(&self, ccx: &ConstCx<'_, '_>) -> Status {
if let hir::ConstContext::Static(_) = ccx.const_kind() {
Status::Allowed
} else {
Status::Forbidden
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
ccx.tcx.sess,
span,
E0013,
"{}s cannot refer to statics",
ccx.const_kind()
);
err.help(
"consider extracting the value of the `static` to a `const`, and referring to that",
);
if ccx.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"`static` and `const` variables can refer to other `const` variables. \
A `const` variable, however, cannot refer to a `static` variable.",
);
err.help("To fix this, the value can be extracted to a `const` and then used.");
}
err
}
}
/// An access to a thread-local `static`.
#[derive(Debug)]
pub struct ThreadLocalAccess;
impl NonConstOp for ThreadLocalAccess {
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
struct_span_err!(
ccx.tcx.sess,
span,
E0625,
"thread-local statics cannot be \
accessed at compile-time"
)
}
}
// Types that cannot appear in the signature or locals of a `const fn`.
pub mod ty {
use super::*;
#[derive(Debug)]
pub struct MutRef(pub mir::LocalKind);
impl NonConstOp for MutRef {
fn status_in_item(&self, _ccx: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_mut_refs)
}
fn importance(&self) -> DiagnosticImportance {
match self.0 {
mir::LocalKind::Var | mir::LocalKind::Temp => DiagnosticImportance::Secondary,
mir::LocalKind::ReturnPointer | mir::LocalKind::Arg => {
DiagnosticImportance::Primary
}
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_mut_refs,
span,
&format!("mutable references are not allowed in {}s", ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct FnPtr(pub mir::LocalKind);
impl NonConstOp for FnPtr {
fn importance(&self) -> DiagnosticImportance {
match self.0 {
mir::LocalKind::Var | mir::LocalKind::Temp => DiagnosticImportance::Secondary,
mir::LocalKind::ReturnPointer | mir::LocalKind::Arg => {
DiagnosticImportance::Primary
}
}
}
fn status_in_item(&self, ccx: &ConstCx<'_, '_>) -> Status {
if ccx.const_kind() != hir::ConstContext::ConstFn {
Status::Allowed
} else {
Status::Unstable(sym::const_fn_fn_ptr_basics)
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_fn_fn_ptr_basics,
span,
&format!("function pointers cannot appear in {}s", ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct ImplTrait;
impl NonConstOp for ImplTrait {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_impl_trait)
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_impl_trait,
span,
&format!("`impl Trait` is not allowed in {}s", ccx.const_kind()),
)
}
}
#[derive(Debug)]
pub struct TraitBound(pub mir::LocalKind);
impl NonConstOp for TraitBound {
fn importance(&self) -> DiagnosticImportance {
match self.0 {
mir::LocalKind::Var | mir::LocalKind::Temp => DiagnosticImportance::Secondary,
mir::LocalKind::ReturnPointer | mir::LocalKind::Arg => {
DiagnosticImportance::Primary
}
}
}
fn status_in_item(&self, ccx: &ConstCx<'_, '_>) -> Status {
if ccx.const_kind() != hir::ConstContext::ConstFn {
Status::Allowed
} else {
Status::Unstable(sym::const_fn_trait_bound)
}
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_fn_trait_bound,
span,
"trait bounds other than `Sized` on const fn parameters are unstable",
)
}
}
/// A trait bound with the `?const Trait` opt-out
#[derive(Debug)]
pub struct TraitBoundNotConst;
impl NonConstOp for TraitBoundNotConst {
fn status_in_item(&self, _: &ConstCx<'_, '_>) -> Status {
Status::Unstable(sym::const_trait_bound_opt_out)
}
fn build_error(&self, ccx: &ConstCx<'_, 'tcx>, span: Span) -> DiagnosticBuilder<'tcx> {
feature_err(
&ccx.tcx.sess.parse_sess,
sym::const_trait_bound_opt_out,
span,
"`?const Trait` syntax is unstable",
)
}
}
}

View File

@@ -0,0 +1,123 @@
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{self, BasicBlock, Location};
use rustc_middle::ty::TyCtxt;
use rustc_span::Span;
use super::check::Qualifs;
use super::ops::{self, NonConstOp};
use super::qualifs::{NeedsDrop, Qualif};
use super::ConstCx;
/// Returns `true` if we should use the more precise live drop checker that runs after drop
/// elaboration.
pub fn checking_enabled(ccx: &ConstCx<'_, '_>) -> bool {
// Const-stable functions must always use the stable live drop checker.
if ccx.is_const_stable_const_fn() {
return false;
}
ccx.tcx.features().const_precise_live_drops
}
/// Look for live drops in a const context.
///
/// This is separate from the rest of the const checking logic because it must run after drop
/// elaboration.
pub fn check_live_drops(tcx: TyCtxt<'tcx>, body: &mir::Body<'tcx>) {
let def_id = body.source.def_id().expect_local();
let const_kind = tcx.hir().body_const_context(def_id);
if const_kind.is_none() {
return;
}
let ccx = ConstCx { body, tcx, const_kind, param_env: tcx.param_env(def_id) };
if !checking_enabled(&ccx) {
return;
}
let mut visitor = CheckLiveDrops { ccx: &ccx, qualifs: Qualifs::default() };
visitor.visit_body(body);
}
struct CheckLiveDrops<'mir, 'tcx> {
ccx: &'mir ConstCx<'mir, 'tcx>,
qualifs: Qualifs<'mir, 'tcx>,
}
// So we can access `body` and `tcx`.
impl std::ops::Deref for CheckLiveDrops<'mir, 'tcx> {
type Target = ConstCx<'mir, 'tcx>;
fn deref(&self) -> &Self::Target {
&self.ccx
}
}
impl CheckLiveDrops<'mir, 'tcx> {
fn check_live_drop(&self, span: Span) {
ops::LiveDrop { dropped_at: None }.build_error(self.ccx, span).emit();
}
}
impl Visitor<'tcx> for CheckLiveDrops<'mir, 'tcx> {
fn visit_basic_block_data(&mut self, bb: BasicBlock, block: &mir::BasicBlockData<'tcx>) {
trace!("visit_basic_block_data: bb={:?} is_cleanup={:?}", bb, block.is_cleanup);
// Ignore drop terminators in cleanup blocks.
if block.is_cleanup {
return;
}
self.super_basic_block_data(bb, block);
}
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
trace!("visit_terminator: terminator={:?} location={:?}", terminator, location);
match &terminator.kind {
mir::TerminatorKind::Drop { place: dropped_place, .. } => {
let dropped_ty = dropped_place.ty(self.body, self.tcx).ty;
if !NeedsDrop::in_any_value_of_ty(self.ccx, dropped_ty) {
bug!(
"Drop elaboration left behind a Drop for a type that does not need dropping"
);
}
if dropped_place.is_indirect() {
self.check_live_drop(terminator.source_info.span);
return;
}
// Drop elaboration is not precise enough to accept code like
// `src/test/ui/consts/control-flow/drop-pass.rs`; e.g., when an `Option<Vec<T>>` is
// initialized with `None` and never changed, it still emits drop glue.
// Hence we additionally check the qualifs here to allow more code to pass.
if self.qualifs.needs_drop(self.ccx, dropped_place.local, location) {
// Use the span where the dropped local was declared for the error.
let span = self.body.local_decls[dropped_place.local].source_info.span;
self.check_live_drop(span);
}
}
mir::TerminatorKind::DropAndReplace { .. } => span_bug!(
terminator.source_info.span,
"`DropAndReplace` should be removed by drop elaboration",
),
mir::TerminatorKind::Abort
| mir::TerminatorKind::Call { .. }
| mir::TerminatorKind::Assert { .. }
| mir::TerminatorKind::FalseEdge { .. }
| mir::TerminatorKind::FalseUnwind { .. }
| mir::TerminatorKind::GeneratorDrop
| mir::TerminatorKind::Goto { .. }
| mir::TerminatorKind::InlineAsm { .. }
| mir::TerminatorKind::Resume
| mir::TerminatorKind::Return
| mir::TerminatorKind::SwitchInt { .. }
| mir::TerminatorKind::Unreachable
| mir::TerminatorKind::Yield { .. } => {}
}
}
}

View File

@@ -0,0 +1,272 @@
//! Structural const qualification.
//!
//! See the `Qualif` trait for more info.
use rustc_errors::ErrorReported;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, subst::SubstsRef, AdtDef, Ty};
use rustc_span::DUMMY_SP;
use rustc_trait_selection::traits;
use super::ConstCx;
pub fn in_any_value_of_ty(
cx: &ConstCx<'_, 'tcx>,
ty: Ty<'tcx>,
error_occured: Option<ErrorReported>,
) -> ConstQualifs {
ConstQualifs {
has_mut_interior: HasMutInterior::in_any_value_of_ty(cx, ty),
needs_drop: NeedsDrop::in_any_value_of_ty(cx, ty),
custom_eq: CustomEq::in_any_value_of_ty(cx, ty),
error_occured,
}
}
/// A "qualif"(-ication) is a way to look for something "bad" in the MIR that would disqualify some
/// code for promotion or prevent it from evaluating at compile time.
///
/// Normally, we would determine what qualifications apply to each type and error when an illegal
/// operation is performed on such a type. However, this was found to be too imprecise, especially
/// in the presence of `enum`s. If only a single variant of an enum has a certain qualification, we
/// needn't reject code unless it actually constructs and operates on the qualified variant.
///
/// To accomplish this, const-checking and promotion use a value-based analysis (as opposed to a
/// type-based one). Qualifications propagate structurally across variables: If a local (or a
/// projection of a local) is assigned a qualified value, that local itself becomes qualified.
pub trait Qualif {
/// The name of the file used to debug the dataflow analysis that computes this qualif.
const ANALYSIS_NAME: &'static str;
/// Whether this `Qualif` is cleared when a local is moved from.
const IS_CLEARED_ON_MOVE: bool = false;
/// Extracts the field of `ConstQualifs` that corresponds to this `Qualif`.
fn in_qualifs(qualifs: &ConstQualifs) -> bool;
/// Returns `true` if *any* value of the given type could possibly have this `Qualif`.
///
/// This function determines `Qualif`s when we cannot do a value-based analysis. Since qualif
/// propagation is context-insenstive, this includes function arguments and values returned
/// from a call to another function.
///
/// It also determines the `Qualif`s for primitive types.
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool;
/// Returns `true` if this `Qualif` is inherent to the given struct or enum.
///
/// By default, `Qualif`s propagate into ADTs in a structural way: An ADT only becomes
/// qualified if part of it is assigned a value with that `Qualif`. However, some ADTs *always*
/// have a certain `Qualif`, regardless of whether their fields have it. For example, a type
/// with a custom `Drop` impl is inherently `NeedsDrop`.
///
/// Returning `true` for `in_adt_inherently` but `false` for `in_any_value_of_ty` is unsound.
fn in_adt_inherently(
cx: &ConstCx<'_, 'tcx>,
adt: &'tcx AdtDef,
substs: SubstsRef<'tcx>,
) -> bool;
}
/// Constant containing interior mutability (`UnsafeCell<T>`).
/// This must be ruled out to make sure that evaluating the constant at compile-time
/// and at *any point* during the run-time would produce the same result. In particular,
/// promotion of temporaries must not change program behavior; if the promoted could be
/// written to, that would be a problem.
pub struct HasMutInterior;
impl Qualif for HasMutInterior {
const ANALYSIS_NAME: &'static str = "flow_has_mut_interior";
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.has_mut_interior
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
!ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env)
}
fn in_adt_inherently(cx: &ConstCx<'_, 'tcx>, adt: &'tcx AdtDef, _: SubstsRef<'tcx>) -> bool {
// Exactly one type, `UnsafeCell`, has the `HasMutInterior` qualif inherently.
// It arises structurally for all other types.
Some(adt.did) == cx.tcx.lang_items().unsafe_cell_type()
}
}
/// Constant containing an ADT that implements `Drop`.
/// This must be ruled out (a) because we cannot run `Drop` during compile-time
/// as that might not be a `const fn`, and (b) because implicit promotion would
/// remove side-effects that occur as part of dropping that value.
pub struct NeedsDrop;
impl Qualif for NeedsDrop {
const ANALYSIS_NAME: &'static str = "flow_needs_drop";
const IS_CLEARED_ON_MOVE: bool = true;
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.needs_drop
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.needs_drop(cx.tcx, cx.param_env)
}
fn in_adt_inherently(cx: &ConstCx<'_, 'tcx>, adt: &'tcx AdtDef, _: SubstsRef<'tcx>) -> bool {
adt.has_dtor(cx.tcx)
}
}
/// A constant that cannot be used as part of a pattern in a `match` expression.
pub struct CustomEq;
impl Qualif for CustomEq {
const ANALYSIS_NAME: &'static str = "flow_custom_eq";
fn in_qualifs(qualifs: &ConstQualifs) -> bool {
qualifs.custom_eq
}
fn in_any_value_of_ty(cx: &ConstCx<'_, 'tcx>, ty: Ty<'tcx>) -> bool {
// If *any* component of a composite data type does not implement `Structural{Partial,}Eq`,
// we know that at least some values of that type are not structural-match. I say "some"
// because that component may be part of an enum variant (e.g.,
// `Option::<NonStructuralMatchTy>::Some`), in which case some values of this type may be
// structural-match (`Option::None`).
let id = cx.tcx.hir().local_def_id_to_hir_id(cx.def_id());
traits::search_for_structural_match_violation(id, cx.body.span, cx.tcx, ty).is_some()
}
fn in_adt_inherently(
cx: &ConstCx<'_, 'tcx>,
adt: &'tcx AdtDef,
substs: SubstsRef<'tcx>,
) -> bool {
let ty = cx.tcx.mk_ty(ty::Adt(adt, substs));
!ty.is_structural_eq_shallow(cx.tcx)
}
}
// FIXME: Use `mir::visit::Visitor` for the `in_*` functions if/when it supports early return.
/// Returns `true` if this `Rvalue` contains qualif `Q`.
pub fn in_rvalue<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, rvalue: &Rvalue<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
match rvalue {
Rvalue::ThreadLocalRef(_) | Rvalue::NullaryOp(..) => {
Q::in_any_value_of_ty(cx, rvalue.ty(cx.body, cx.tcx))
}
Rvalue::Discriminant(place) | Rvalue::Len(place) => {
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::Use(operand)
| Rvalue::Repeat(operand, _)
| Rvalue::UnaryOp(_, operand)
| Rvalue::Cast(_, operand, _) => in_operand::<Q, _>(cx, in_local, operand),
Rvalue::BinaryOp(_, box (lhs, rhs)) | Rvalue::CheckedBinaryOp(_, box (lhs, rhs)) => {
in_operand::<Q, _>(cx, in_local, lhs) || in_operand::<Q, _>(cx, in_local, rhs)
}
Rvalue::Ref(_, _, place) | Rvalue::AddressOf(_, place) => {
// Special-case reborrows to be more like a copy of the reference.
if let Some((place_base, ProjectionElem::Deref)) = place.as_ref().last_projection() {
let base_ty = place_base.ty(cx.body, cx.tcx).ty;
if let ty::Ref(..) = base_ty.kind() {
return in_place::<Q, _>(cx, in_local, place_base);
}
}
in_place::<Q, _>(cx, in_local, place.as_ref())
}
Rvalue::Aggregate(kind, operands) => {
// Return early if we know that the struct or enum being constructed is always
// qualified.
if let AggregateKind::Adt(def, _, substs, ..) = **kind {
if Q::in_adt_inherently(cx, def, substs) {
return true;
}
}
// Otherwise, proceed structurally...
operands.iter().any(|o| in_operand::<Q, _>(cx, in_local, o))
}
}
}
/// Returns `true` if this `Place` contains qualif `Q`.
pub fn in_place<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, place: PlaceRef<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let mut place = place;
while let Some((place_base, elem)) = place.last_projection() {
match elem {
ProjectionElem::Index(index) if in_local(index) => return true,
ProjectionElem::Deref
| ProjectionElem::Field(_, _)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. }
| ProjectionElem::Downcast(_, _)
| ProjectionElem::Index(_) => {}
}
let base_ty = place_base.ty(cx.body, cx.tcx);
let proj_ty = base_ty.projection_ty(cx.tcx, elem).ty;
if !Q::in_any_value_of_ty(cx, proj_ty) {
return false;
}
place = place_base;
}
assert!(place.projection.is_empty());
in_local(place.local)
}
/// Returns `true` if this `Operand` contains qualif `Q`.
pub fn in_operand<Q, F>(cx: &ConstCx<'_, 'tcx>, in_local: &mut F, operand: &Operand<'tcx>) -> bool
where
Q: Qualif,
F: FnMut(Local) -> bool,
{
let constant = match operand {
Operand::Copy(place) | Operand::Move(place) => {
return in_place::<Q, _>(cx, in_local, place.as_ref());
}
Operand::Constant(c) => c,
};
// Check the qualifs of the value of `const` items.
if let Some(ct) = constant.literal.const_for_ty() {
if let ty::ConstKind::Unevaluated(ty::Unevaluated { def, substs_: _, promoted }) = ct.val {
assert!(promoted.is_none());
// Don't peek inside trait associated constants.
if cx.tcx.trait_of_item(def.did).is_none() {
let qualifs = if let Some((did, param_did)) = def.as_const_arg() {
cx.tcx.at(constant.span).mir_const_qualif_const_arg((did, param_did))
} else {
cx.tcx.at(constant.span).mir_const_qualif(def.did)
};
if !Q::in_qualifs(&qualifs) {
return false;
}
// Just in case the type is more specific than
// the definition, e.g., impl associated const
// with type parameters, take it into account.
}
}
}
// Otherwise use the qualifs of the type.
Q::in_any_value_of_ty(cx, constant.literal.ty())
}

View File

@@ -0,0 +1,216 @@
//! Propagate `Qualif`s between locals and query the results.
//!
//! This contains the dataflow analysis used to track `Qualif`s on complex control-flow graphs.
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::{self, BasicBlock, Local, Location};
use std::marker::PhantomData;
use super::{qualifs, ConstCx, Qualif};
/// A `Visitor` that propagates qualifs between locals. This defines the transfer function of
/// `FlowSensitiveAnalysis`.
///
/// This transfer does nothing when encountering an indirect assignment. Consumers should rely on
/// the `MaybeMutBorrowedLocals` dataflow pass to see if a `Local` may have become qualified via
/// an indirect assignment or function call.
struct TransferFunction<'a, 'mir, 'tcx, Q> {
ccx: &'a ConstCx<'mir, 'tcx>,
qualifs_per_local: &'a mut BitSet<Local>,
_qualif: PhantomData<Q>,
}
impl<Q> TransferFunction<'a, 'mir, 'tcx, Q>
where
Q: Qualif,
{
fn new(ccx: &'a ConstCx<'mir, 'tcx>, qualifs_per_local: &'a mut BitSet<Local>) -> Self {
TransferFunction { ccx, qualifs_per_local, _qualif: PhantomData }
}
fn initialize_state(&mut self) {
self.qualifs_per_local.clear();
for arg in self.ccx.body.args_iter() {
let arg_ty = self.ccx.body.local_decls[arg].ty;
if Q::in_any_value_of_ty(self.ccx, arg_ty) {
self.qualifs_per_local.insert(arg);
}
}
}
fn assign_qualif_direct(&mut self, place: &mir::Place<'tcx>, value: bool) {
debug_assert!(!place.is_indirect());
match (value, place.as_ref()) {
(true, mir::PlaceRef { local, .. }) => {
self.qualifs_per_local.insert(local);
}
// For now, we do not clear the qualif if a local is overwritten in full by
// an unqualified rvalue (e.g. `y = 5`). This is to be consistent
// with aggregates where we overwrite all fields with assignments, which would not
// get this feature.
(false, mir::PlaceRef { local: _, projection: &[] }) => {
// self.qualifs_per_local.remove(*local);
}
_ => {}
}
}
fn apply_call_return_effect(
&mut self,
_block: BasicBlock,
_func: &mir::Operand<'tcx>,
_args: &[mir::Operand<'tcx>],
return_place: mir::Place<'tcx>,
) {
// We cannot reason about another function's internals, so use conservative type-based
// qualification for the result of a function call.
let return_ty = return_place.ty(self.ccx.body, self.ccx.tcx).ty;
let qualif = Q::in_any_value_of_ty(self.ccx, return_ty);
if !return_place.is_indirect() {
self.assign_qualif_direct(&return_place, qualif);
}
}
}
impl<Q> Visitor<'tcx> for TransferFunction<'_, '_, 'tcx, Q>
where
Q: Qualif,
{
fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) {
self.super_operand(operand, location);
if !Q::IS_CLEARED_ON_MOVE {
return;
}
// If a local with no projections is moved from (e.g. `x` in `y = x`), record that
// it no longer needs to be dropped.
if let mir::Operand::Move(place) = operand {
if let Some(local) = place.as_local() {
self.qualifs_per_local.remove(local);
}
}
}
fn visit_assign(
&mut self,
place: &mir::Place<'tcx>,
rvalue: &mir::Rvalue<'tcx>,
location: Location,
) {
let qualif = qualifs::in_rvalue::<Q, _>(
self.ccx,
&mut |l| self.qualifs_per_local.contains(l),
rvalue,
);
if !place.is_indirect() {
self.assign_qualif_direct(place, qualif);
}
// We need to assign qualifs to the left-hand side before visiting `rvalue` since
// qualifs can be cleared on move.
self.super_assign(place, rvalue, location);
}
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
// The effect of assignment to the return place in `TerminatorKind::Call` is not applied
// here; that occurs in `apply_call_return_effect`.
if let mir::TerminatorKind::DropAndReplace { value, place, .. } = &terminator.kind {
let qualif = qualifs::in_operand::<Q, _>(
self.ccx,
&mut |l| self.qualifs_per_local.contains(l),
value,
);
if !place.is_indirect() {
self.assign_qualif_direct(place, qualif);
}
}
// We need to assign qualifs to the dropped location before visiting the operand that
// replaces it since qualifs can be cleared on move.
self.super_terminator(terminator, location);
}
}
/// The dataflow analysis used to propagate qualifs on arbitrary CFGs.
pub(super) struct FlowSensitiveAnalysis<'a, 'mir, 'tcx, Q> {
ccx: &'a ConstCx<'mir, 'tcx>,
_qualif: PhantomData<Q>,
}
impl<'a, 'mir, 'tcx, Q> FlowSensitiveAnalysis<'a, 'mir, 'tcx, Q>
where
Q: Qualif,
{
pub(super) fn new(_: Q, ccx: &'a ConstCx<'mir, 'tcx>) -> Self {
FlowSensitiveAnalysis { ccx, _qualif: PhantomData }
}
fn transfer_function(
&self,
state: &'a mut BitSet<Local>,
) -> TransferFunction<'a, 'mir, 'tcx, Q> {
TransferFunction::<Q>::new(self.ccx, state)
}
}
impl<Q> rustc_mir_dataflow::AnalysisDomain<'tcx> for FlowSensitiveAnalysis<'_, '_, 'tcx, Q>
where
Q: Qualif,
{
type Domain = BitSet<Local>;
const NAME: &'static str = Q::ANALYSIS_NAME;
fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
BitSet::new_empty(body.local_decls.len())
}
fn initialize_start_block(&self, _body: &mir::Body<'tcx>, state: &mut Self::Domain) {
self.transfer_function(state).initialize_state();
}
}
impl<Q> rustc_mir_dataflow::Analysis<'tcx> for FlowSensitiveAnalysis<'_, '_, 'tcx, Q>
where
Q: Qualif,
{
fn apply_statement_effect(
&self,
state: &mut Self::Domain,
statement: &mir::Statement<'tcx>,
location: Location,
) {
self.transfer_function(state).visit_statement(statement, location);
}
fn apply_terminator_effect(
&self,
state: &mut Self::Domain,
terminator: &mir::Terminator<'tcx>,
location: Location,
) {
self.transfer_function(state).visit_terminator(terminator, location);
}
fn apply_call_return_effect(
&self,
state: &mut Self::Domain,
block: BasicBlock,
func: &mir::Operand<'tcx>,
args: &[mir::Operand<'tcx>],
return_place: mir::Place<'tcx>,
) {
self.transfer_function(state).apply_call_return_effect(block, func, args, return_place)
}
}