[codegen] assume the tag, not the relative discriminant

This commit is contained in:
Scott McMurray
2025-07-31 19:28:48 -07:00
parent dc0bae1db7
commit c396521fd3
3 changed files with 86 additions and 58 deletions

View File

@@ -498,6 +498,35 @@ impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64); bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
(is_niche, tagged_discr, 0) (is_niche, tagged_discr, 0)
} else { } else {
// Thanks to parameter attributes and load metadata, LLVM already knows
// the general valid range of the tag. It's possible, though, for there
// to be an impossible value *in the middle*, which those ranges don't
// communicate, so it's worth an `assume` to let the optimizer know.
// Most importantly, this means when optimizing a variant test like
// `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
// to `!is_niche` because the `complex` part can't possibly match.
//
// This was previously asserted on `tagged_discr` below, where the
// impossible value is more obvious, but that caused an intermediate
// value to become multi-use and thus not optimize, so instead this
// assumes on the original input which is always multi-use. See
// <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
//
// FIXME: If we ever get range assume operand bundles in LLVM (so we
// don't need the `icmp`s in the instruction stream any more), it
// might be worth moving this back to being on the switch argument
// where it's more obviously applicable.
if niche_variants.contains(&untagged_variant)
&& bx.cx().sess().opts.optimize != OptLevel::No
{
let impossible = niche_start
.wrapping_add(u128::from(untagged_variant.as_u32()))
.wrapping_sub(u128::from(niche_variants.start().as_u32()));
let impossible = bx.cx().const_uint_big(tag_llty, impossible);
let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
bx.assume(ne);
}
// With multiple niched variants we'll have to actually compute // With multiple niched variants we'll have to actually compute
// the variant index from the stored tag. // the variant index from the stored tag.
// //
@@ -588,20 +617,6 @@ impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
let untagged_variant_const = let untagged_variant_const =
bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32())); bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
// Thanks to parameter attributes and load metadata, LLVM already knows
// the general valid range of the tag. It's possible, though, for there
// to be an impossible value *in the middle*, which those ranges don't
// communicate, so it's worth an `assume` to let the optimizer know.
// Most importantly, this means when optimizing a variant test like
// `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
// to `!is_niche` because the `complex` part can't possibly match.
if niche_variants.contains(&untagged_variant)
&& bx.cx().sess().opts.optimize != OptLevel::No
{
let ne = bx.icmp(IntPredicate::IntNE, tagged_discr, untagged_variant_const);
bx.assume(ne);
}
let discr = bx.select(is_niche, tagged_discr, untagged_variant_const); let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
// In principle we could insert assumes on the possible range of `discr`, but // In principle we could insert assumes on the possible range of `discr`, but

View File

@@ -91,18 +91,23 @@ pub enum Mid<T> {
pub fn mid_bool_eq_discr(a: Mid<bool>, b: Mid<bool>) -> bool { pub fn mid_bool_eq_discr(a: Mid<bool>, b: Mid<bool>) -> bool {
// CHECK-LABEL: @mid_bool_eq_discr( // CHECK-LABEL: @mid_bool_eq_discr(
// CHECK: %[[A_REL_DISCR:.+]] = add nsw i8 %a, -2 // CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %a, 3
// CHECK: %[[A_IS_NICHE:.+]] = icmp samesign ugt i8 %a, 1
// CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %[[A_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]])
// CHECK: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1 // LLVM20: %[[A_REL_DISCR:.+]] = add nsw i8 %a, -2
// CHECK: %[[A_IS_NICHE:.+]] = icmp samesign ugt i8 %a, 1
// LLVM20: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1
// CHECK: %[[B_REL_DISCR:.+]] = add nsw i8 %b, -2 // CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %b, 3
// CHECK: %[[B_IS_NICHE:.+]] = icmp samesign ugt i8 %b, 1
// CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %[[B_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]])
// CHECK: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1 // LLVM20: %[[B_REL_DISCR:.+]] = add nsw i8 %b, -2
// CHECK: %[[B_IS_NICHE:.+]] = icmp samesign ugt i8 %b, 1
// LLVM20: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1
// LLVM21: %[[A_MOD_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %a, i8 3
// LLVM21: %[[B_MOD_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %b, i8 3
// LLVM20: %[[R:.+]] = icmp eq i8 %[[A_DISCR]], %[[B_DISCR]]
// LLVM21: %[[R:.+]] = icmp eq i8 %[[A_MOD_DISCR]], %[[B_MOD_DISCR]]
// CHECK: ret i1 %[[R]] // CHECK: ret i1 %[[R]]
discriminant_value(&a) == discriminant_value(&b) discriminant_value(&a) == discriminant_value(&b)
} }
@@ -111,19 +116,23 @@ pub fn mid_bool_eq_discr(a: Mid<bool>, b: Mid<bool>) -> bool {
pub fn mid_ord_eq_discr(a: Mid<Ordering>, b: Mid<Ordering>) -> bool { pub fn mid_ord_eq_discr(a: Mid<Ordering>, b: Mid<Ordering>) -> bool {
// CHECK-LABEL: @mid_ord_eq_discr( // CHECK-LABEL: @mid_ord_eq_discr(
// CHECK: %[[A_REL_DISCR:.+]] = add nsw i8 %a, -2 // CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %a, 3
// CHECK: %[[A_IS_NICHE:.+]] = icmp sgt i8 %a, 1
// CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %[[A_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]])
// CHECK: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1 // LLVM20: %[[A_REL_DISCR:.+]] = add nsw i8 %a, -2
// CHECK: %[[A_IS_NICHE:.+]] = icmp sgt i8 %a, 1
// LLVM20: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1
// CHECK: %[[B_REL_DISCR:.+]] = add nsw i8 %b, -2 // CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %b, 3
// CHECK: %[[B_IS_NICHE:.+]] = icmp sgt i8 %b, 1
// CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %[[B_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]])
// CHECK: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1 // LLVM20: %[[B_REL_DISCR:.+]] = add nsw i8 %b, -2
// CHECK: %[[B_IS_NICHE:.+]] = icmp sgt i8 %b, 1
// LLVM20: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1
// CHECK: %[[R:.+]] = icmp eq i8 %[[A_DISCR]], %[[B_DISCR]] // LLVM21: %[[A_MOD_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %a, i8 3
// LLVM21: %[[B_MOD_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %b, i8 3
// LLVM20: %[[R:.+]] = icmp eq i8 %[[A_DISCR]], %[[B_DISCR]]
// LLVM21: %[[R:.+]] = icmp eq i8 %[[A_MOD_DISCR]], %[[B_MOD_DISCR]]
// CHECK: ret i1 %[[R]] // CHECK: ret i1 %[[R]]
discriminant_value(&a) == discriminant_value(&b) discriminant_value(&a) == discriminant_value(&b)
} }
@@ -140,16 +149,16 @@ pub fn mid_nz32_eq_discr(a: Mid<NonZero<u32>>, b: Mid<NonZero<u32>>) -> bool {
pub fn mid_ac_eq_discr(a: Mid<AC>, b: Mid<AC>) -> bool { pub fn mid_ac_eq_discr(a: Mid<AC>, b: Mid<AC>) -> bool {
// CHECK-LABEL: @mid_ac_eq_discr( // CHECK-LABEL: @mid_ac_eq_discr(
// LLVM20: %[[A_REL_DISCR:.+]] = xor i8 %a, -128
// CHECK: %[[A_IS_NICHE:.+]] = icmp slt i8 %a, 0
// CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %a, -127 // CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i8 %a, -127
// CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]])
// LLVM20: %[[A_REL_DISCR:.+]] = xor i8 %a, -128
// CHECK: %[[A_IS_NICHE:.+]] = icmp slt i8 %a, 0
// LLVM20: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1 // LLVM20: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %[[A_REL_DISCR]], i8 1
// LLVM20: %[[B_REL_DISCR:.+]] = xor i8 %b, -128
// CHECK: %[[B_IS_NICHE:.+]] = icmp slt i8 %b, 0
// CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %b, -127 // CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i8 %b, -127
// CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]])
// LLVM20: %[[B_REL_DISCR:.+]] = xor i8 %b, -128
// CHECK: %[[B_IS_NICHE:.+]] = icmp slt i8 %b, 0
// LLVM20: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1 // LLVM20: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i8 %[[B_REL_DISCR]], i8 1
// LLVM21: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %a, i8 -127 // LLVM21: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i8 %a, i8 -127
@@ -166,21 +175,25 @@ pub fn mid_ac_eq_discr(a: Mid<AC>, b: Mid<AC>) -> bool {
pub fn mid_giant_eq_discr(a: Mid<Giant>, b: Mid<Giant>) -> bool { pub fn mid_giant_eq_discr(a: Mid<Giant>, b: Mid<Giant>) -> bool {
// CHECK-LABEL: @mid_giant_eq_discr( // CHECK-LABEL: @mid_giant_eq_discr(
// CHECK: %[[A_TRUNC:.+]] = trunc nuw nsw i128 %a to i64 // CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i128 %a, 6
// CHECK: %[[A_REL_DISCR:.+]] = add nsw i64 %[[A_TRUNC]], -5
// CHECK: %[[A_IS_NICHE:.+]] = icmp samesign ugt i128 %a, 4
// CHECK: %[[A_NOT_HOLE:.+]] = icmp ne i64 %[[A_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[A_NOT_HOLE]])
// CHECK: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i64 %[[A_REL_DISCR]], i64 1 // CHECK: %[[A_TRUNC:.+]] = trunc nuw nsw i128 %a to i64
// LLVM20: %[[A_REL_DISCR:.+]] = add nsw i64 %[[A_TRUNC]], -5
// CHECK: %[[A_IS_NICHE:.+]] = icmp samesign ugt i128 %a, 4
// LLVM20: %[[A_DISCR:.+]] = select i1 %[[A_IS_NICHE]], i64 %[[A_REL_DISCR]], i64 1
// CHECK: %[[B_TRUNC:.+]] = trunc nuw nsw i128 %b to i64 // CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i128 %b, 6
// CHECK: %[[B_REL_DISCR:.+]] = add nsw i64 %[[B_TRUNC]], -5
// CHECK: %[[B_IS_NICHE:.+]] = icmp samesign ugt i128 %b, 4
// CHECK: %[[B_NOT_HOLE:.+]] = icmp ne i64 %[[B_REL_DISCR]], 1
// CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]]) // CHECK: tail call void @llvm.assume(i1 %[[B_NOT_HOLE]])
// CHECK: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i64 %[[B_REL_DISCR]], i64 1 // CHECK: %[[B_TRUNC:.+]] = trunc nuw nsw i128 %b to i64
// LLVM20: %[[B_REL_DISCR:.+]] = add nsw i64 %[[B_TRUNC]], -5
// CHECK: %[[B_IS_NICHE:.+]] = icmp samesign ugt i128 %b, 4
// LLVM20: %[[B_DISCR:.+]] = select i1 %[[B_IS_NICHE]], i64 %[[B_REL_DISCR]], i64 1
// CHECK: %[[R:.+]] = icmp eq i64 %[[A_DISCR]], %[[B_DISCR]] // LLVM21: %[[A_MODIFIED_TAG:.+]] = select i1 %[[A_IS_NICHE]], i64 %[[A_TRUNC]], i64 6
// LLVM21: %[[B_MODIFIED_TAG:.+]] = select i1 %[[B_IS_NICHE]], i64 %[[B_TRUNC]], i64 6
// LLVM21: %[[R:.+]] = icmp eq i64 %[[A_MODIFIED_TAG]], %[[B_MODIFIED_TAG]]
// LLVM20: %[[R:.+]] = icmp eq i64 %[[A_DISCR]], %[[B_DISCR]]
// CHECK: ret i1 %[[R]] // CHECK: ret i1 %[[R]]
discriminant_value(&a) == discriminant_value(&b) discriminant_value(&a) == discriminant_value(&b)
} }

View File

@@ -138,18 +138,18 @@ pub fn match3(e: Option<&u8>) -> i16 {
#[derive(PartialEq)] #[derive(PartialEq)]
pub enum MiddleNiche { pub enum MiddleNiche {
A, A, // tag 2
B, B, // tag 3
C(bool), C(bool), // untagged
D, D, // tag 5
E, E, // tag 6
} }
// CHECK-LABEL: define{{( dso_local)?}} noundef{{( range\(i8 -?[0-9]+, -?[0-9]+\))?}} i8 @match4(i8{{.+}}%0) // CHECK-LABEL: define{{( dso_local)?}} noundef{{( range\(i8 -?[0-9]+, -?[0-9]+\))?}} i8 @match4(i8{{.+}}%0)
// CHECK-NEXT: start: // CHECK-NEXT: start:
// CHECK-NEXT: %[[REL_VAR:.+]] = add{{( nsw)?}} i8 %0, -2 // CHECK-NEXT: %[[NOT_IMPOSSIBLE:.+]] = icmp ne i8 %0, 4
// CHECK-NEXT: %[[NOT_IMPOSSIBLE:.+]] = icmp ne i8 %[[REL_VAR]], 2
// CHECK-NEXT: call void @llvm.assume(i1 %[[NOT_IMPOSSIBLE]]) // CHECK-NEXT: call void @llvm.assume(i1 %[[NOT_IMPOSSIBLE]])
// CHECK-NEXT: %[[REL_VAR:.+]] = add{{( nsw)?}} i8 %0, -2
// CHECK-NEXT: %[[NOT_NICHE:.+]] = icmp{{( samesign)?}} ult i8 %0, 2 // CHECK-NEXT: %[[NOT_NICHE:.+]] = icmp{{( samesign)?}} ult i8 %0, 2
// CHECK-NEXT: %[[DISCR:.+]] = select i1 %[[NOT_NICHE]], i8 2, i8 %[[REL_VAR]] // CHECK-NEXT: %[[DISCR:.+]] = select i1 %[[NOT_NICHE]], i8 2, i8 %[[REL_VAR]]
// CHECK-NEXT: switch i8 %[[DISCR]] // CHECK-NEXT: switch i8 %[[DISCR]]
@@ -443,19 +443,19 @@ pub enum HugeVariantIndex {
V255(Never), V255(Never),
V256(Never), V256(Never),
Possible257, Possible257, // tag 2
Bool258(bool), Bool258(bool), // untagged
Possible259, Possible259, // tag 4
} }
// CHECK-LABEL: define{{( dso_local)?}} noundef{{( range\(i8 [0-9]+, [0-9]+\))?}} i8 @match5(i8{{.+}}%0) // CHECK-LABEL: define{{( dso_local)?}} noundef{{( range\(i8 [0-9]+, [0-9]+\))?}} i8 @match5(i8{{.+}}%0)
// CHECK-NEXT: start: // CHECK-NEXT: start:
// CHECK-NEXT: %[[NOT_IMPOSSIBLE:.+]] = icmp ne i8 %0, 3
// CHECK-NEXT: call void @llvm.assume(i1 %[[NOT_IMPOSSIBLE]])
// CHECK-NEXT: %[[REL_VAR:.+]] = add{{( nsw)?}} i8 %0, -2 // CHECK-NEXT: %[[REL_VAR:.+]] = add{{( nsw)?}} i8 %0, -2
// CHECK-NEXT: %[[REL_VAR_WIDE:.+]] = zext i8 %[[REL_VAR]] to i64 // CHECK-NEXT: %[[REL_VAR_WIDE:.+]] = zext i8 %[[REL_VAR]] to i64
// CHECK-NEXT: %[[IS_NICHE:.+]] = icmp{{( samesign)?}} ugt i8 %0, 1 // CHECK-NEXT: %[[IS_NICHE:.+]] = icmp{{( samesign)?}} ugt i8 %0, 1
// CHECK-NEXT: %[[NICHE_DISCR:.+]] = add nuw nsw i64 %[[REL_VAR_WIDE]], 257 // CHECK-NEXT: %[[NICHE_DISCR:.+]] = add nuw nsw i64 %[[REL_VAR_WIDE]], 257
// CHECK-NEXT: %[[NOT_IMPOSSIBLE:.+]] = icmp ne i64 %[[NICHE_DISCR]], 258
// CHECK-NEXT: call void @llvm.assume(i1 %[[NOT_IMPOSSIBLE]])
// CHECK-NEXT: %[[DISCR:.+]] = select i1 %[[IS_NICHE]], i64 %[[NICHE_DISCR]], i64 258 // CHECK-NEXT: %[[DISCR:.+]] = select i1 %[[IS_NICHE]], i64 %[[NICHE_DISCR]], i64 258
// CHECK-NEXT: switch i64 %[[DISCR]], // CHECK-NEXT: switch i64 %[[DISCR]],
// CHECK-NEXT: i64 257, // CHECK-NEXT: i64 257,