Add an in-place rotate method for slices to libcore
A helpful primitive for moving chunks of data around inside a slice. In particular, adding elements to the end of a Vec then moving them somewhere else, as a way to do efficient multiple-insert. (There's drain for efficient block-remove, but no easy way to block-insert.) Talk with another example: <https://youtu.be/qH6sSOr-yk8?t=560>
This commit is contained in:
@@ -51,6 +51,7 @@ use mem;
|
||||
use marker::{Copy, Send, Sync, Sized, self};
|
||||
use iter_private::TrustedRandomAccess;
|
||||
|
||||
mod rotate;
|
||||
mod sort;
|
||||
|
||||
#[repr(C)]
|
||||
@@ -202,6 +203,9 @@ pub trait SliceExt {
|
||||
#[stable(feature = "core", since = "1.6.0")]
|
||||
fn ends_with(&self, needle: &[Self::Item]) -> bool where Self::Item: PartialEq;
|
||||
|
||||
#[unstable(feature = "slice_rotate", issue = "123456789")]
|
||||
fn rotate(&mut self, mid: usize) -> usize;
|
||||
|
||||
#[stable(feature = "clone_from_slice", since = "1.7.0")]
|
||||
fn clone_from_slice(&mut self, src: &[Self::Item]) where Self::Item: Clone;
|
||||
|
||||
@@ -635,6 +639,18 @@ impl<T> SliceExt for [T] {
|
||||
self.binary_search_by(|p| p.borrow().cmp(x))
|
||||
}
|
||||
|
||||
fn rotate(&mut self, mid: usize) -> usize {
|
||||
assert!(mid <= self.len());
|
||||
let k = self.len() - mid;
|
||||
|
||||
unsafe {
|
||||
let p = self.as_mut_ptr();
|
||||
rotate::ptr_rotate(mid, p.offset(mid as isize), k);
|
||||
}
|
||||
|
||||
k
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn clone_from_slice(&mut self, src: &[T]) where T: Clone {
|
||||
assert!(self.len() == src.len(),
|
||||
|
||||
154
src/libcore/slice/rotate.rs
Normal file
154
src/libcore/slice/rotate.rs
Normal file
@@ -0,0 +1,154 @@
|
||||
// Copyright 2012-2017 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use cmp;
|
||||
use mem;
|
||||
use ptr;
|
||||
|
||||
/// Rotation is much faster if it has access to a little bit of memory. This
|
||||
/// union provides a RawVec-like interface, but to a fixed-size stack buffer.
|
||||
#[allow(unions_with_drop_fields)]
|
||||
union RawArray<T> {
|
||||
/// Ensure this is appropriately aligned for T, and is big
|
||||
/// enough for two elements even if T is enormous.
|
||||
typed: [T; 2],
|
||||
/// For normally-sized types, especially things like u8, having more
|
||||
/// than 2 in the buffer is necessary for usefulness, so pad it out
|
||||
/// enough to be helpful, but not so big as to risk overflow.
|
||||
_extra: [usize; 32],
|
||||
}
|
||||
|
||||
impl<T> RawArray<T> {
|
||||
fn new() -> Self {
|
||||
unsafe { mem::uninitialized() }
|
||||
}
|
||||
fn ptr(&self) -> *mut T {
|
||||
unsafe { &self.typed as *const T as *mut T }
|
||||
}
|
||||
fn cap() -> usize {
|
||||
if mem::size_of::<T>() == 0 {
|
||||
usize::max_value()
|
||||
} else {
|
||||
mem::size_of::<Self>() / mem::size_of::<T>()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Rotates the range `[mid-left, mid+right)` such that the element at `mid`
|
||||
/// becomes the first element. Equivalently, rotates the range `left`
|
||||
/// elements to the left or `right` elements to the right.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The specified range must be valid for reading and writing.
|
||||
/// The type `T` must have non-zero size.
|
||||
///
|
||||
/// # Algorithm
|
||||
///
|
||||
/// For longer rotations, swap the left-most `delta = min(left, right)`
|
||||
/// elements with the right-most `delta` elements. LLVM vectorizes this,
|
||||
/// which is profitable as we only reach this step for a "large enough"
|
||||
/// rotation. Doing this puts `delta` elements on the larger side into the
|
||||
/// correct position, leaving a smaller rotate problem. Demonstration:
|
||||
///
|
||||
/// ```text
|
||||
/// [ 6 7 8 9 10 11 12 13 . 1 2 3 4 5 ]
|
||||
/// 1 2 3 4 5 [ 11 12 13 . 6 7 8 9 10 ]
|
||||
/// 1 2 3 4 5 [ 8 9 10 . 6 7 ] 11 12 13
|
||||
/// 1 2 3 4 5 6 7 [ 10 . 8 9 ] 11 12 13
|
||||
/// 1 2 3 4 5 6 7 [ 9 . 8 ] 10 11 12 13
|
||||
/// 1 2 3 4 5 6 7 8 [ . ] 9 10 11 12 13
|
||||
/// ```
|
||||
///
|
||||
/// Once the rotation is small enough, copy some elements into a stack
|
||||
/// buffer, `memmove` the others, and move the ones back from the buffer.
|
||||
pub unsafe fn ptr_rotate<T>(mut left: usize, mid: *mut T, mut right: usize) {
|
||||
loop {
|
||||
let delta = cmp::min(left, right);
|
||||
if delta <= RawArray::<T>::cap() {
|
||||
break;
|
||||
}
|
||||
|
||||
ptr_swap_n(
|
||||
mid.offset(-(left as isize)),
|
||||
mid.offset((right-delta) as isize),
|
||||
delta);
|
||||
|
||||
if left <= right {
|
||||
right -= delta;
|
||||
} else {
|
||||
left -= delta;
|
||||
}
|
||||
}
|
||||
|
||||
let rawarray = RawArray::new();
|
||||
let buf = rawarray.ptr();
|
||||
|
||||
let dim = mid.offset(-(left as isize)).offset(right as isize);
|
||||
if left <= right {
|
||||
ptr::copy_nonoverlapping(mid.offset(-(left as isize)), buf, left);
|
||||
ptr::copy(mid, mid.offset(-(left as isize)), right);
|
||||
ptr::copy_nonoverlapping(buf, dim, left);
|
||||
}
|
||||
else {
|
||||
ptr::copy_nonoverlapping(mid, buf, right);
|
||||
ptr::copy(mid.offset(-(left as isize)), dim, left);
|
||||
ptr::copy_nonoverlapping(buf, mid.offset(-(left as isize)), right);
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn ptr_swap_u8(a: *mut u8, b: *mut u8, n: usize) {
|
||||
for i in 0..n {
|
||||
ptr::swap(a.offset(i as isize), b.offset(i as isize));
|
||||
}
|
||||
}
|
||||
unsafe fn ptr_swap_u16(a: *mut u16, b: *mut u16, n: usize) {
|
||||
for i in 0..n {
|
||||
ptr::swap(a.offset(i as isize), b.offset(i as isize));
|
||||
}
|
||||
}
|
||||
unsafe fn ptr_swap_u32(a: *mut u32, b: *mut u32, n: usize) {
|
||||
for i in 0..n {
|
||||
ptr::swap(a.offset(i as isize), b.offset(i as isize));
|
||||
}
|
||||
}
|
||||
unsafe fn ptr_swap_u64(a: *mut u64, b: *mut u64, n: usize) {
|
||||
for i in 0..n {
|
||||
ptr::swap(a.offset(i as isize), b.offset(i as isize));
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn ptr_swap_n<T>(a: *mut T, b: *mut T, n: usize) {
|
||||
// Doing this as a generic is 16% & 40% slower in two of the `String`
|
||||
// benchmarks, as (based on the block names) LLVM doesn't vectorize it.
|
||||
// Since this is just operating on raw memory, dispatch to a version
|
||||
// with appropriate alignment. Helps with code size as well, by
|
||||
// avoiding monomorphizing different unrolled loops for `i32`,
|
||||
// `u32`, `f32`, `[u32; 1]`, etc.
|
||||
let size_of_t = mem::size_of::<T>();
|
||||
let align_of_t = mem::align_of::<T>();
|
||||
|
||||
let a64 = mem::align_of::<u64>();
|
||||
if a64 == 8 && align_of_t % a64 == 0 {
|
||||
return ptr_swap_u64(a as *mut u64, b as *mut u64, n * (size_of_t / 8));
|
||||
}
|
||||
|
||||
let a32 = mem::align_of::<u32>();
|
||||
if a32 == 4 && align_of_t % a32 == 0 {
|
||||
return ptr_swap_u32(a as *mut u32, b as *mut u32, n * (size_of_t / 4));
|
||||
}
|
||||
|
||||
let a16 = mem::align_of::<u16>();
|
||||
if a16 == 2 && align_of_t % a16 == 0 {
|
||||
return ptr_swap_u16(a as *mut u16, b as *mut u16, n * (size_of_t / 2));
|
||||
}
|
||||
|
||||
ptr_swap_u8(a as *mut u8, b as *mut u8, n * size_of_t);
|
||||
}
|
||||
@@ -29,6 +29,7 @@
|
||||
#![feature(raw)]
|
||||
#![feature(sip_hash_13)]
|
||||
#![feature(slice_patterns)]
|
||||
#![feature(slice_rotate)]
|
||||
#![feature(sort_internals)]
|
||||
#![feature(sort_unstable)]
|
||||
#![feature(step_by)]
|
||||
|
||||
@@ -238,6 +238,22 @@ fn test_find_rfind() {
|
||||
assert_eq!(v.iter().rfind(|&&x| x <= 3), Some(&3));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_rotate() {
|
||||
const N: usize = 600;
|
||||
let a: &mut [_] = &mut [0; N];
|
||||
for i in 0..N {
|
||||
a[i] = i;
|
||||
}
|
||||
|
||||
let k = a.rotate(42);
|
||||
|
||||
assert_eq!(k, N - 42);
|
||||
for i in 0..N {
|
||||
assert_eq!(a[(i+k)%N], i);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sort_unstable() {
|
||||
let mut v = [0; 600];
|
||||
|
||||
Reference in New Issue
Block a user