Auto merge of #98247 - jackh726:regionkind-rustc-type-ir, r=compiler-errors

Move RegionKind to rustc_type_ir

(Also UniverseIndex)

r? rust-lang/types
This commit is contained in:
bors
2022-06-19 19:55:45 +00:00
12 changed files with 597 additions and 344 deletions

View File

@@ -55,6 +55,7 @@ use std::{fmt, str};
pub use crate::ty::diagnostics::*;
pub use rustc_type_ir::InferTy::*;
pub use rustc_type_ir::RegionKind::*;
pub use rustc_type_ir::TyKind::*;
pub use rustc_type_ir::*;
@@ -80,7 +81,6 @@ pub use self::list::List;
pub use self::parameterized::ParameterizedOverTcx;
pub use self::rvalue_scopes::RvalueScopes;
pub use self::sty::BoundRegionKind::*;
pub use self::sty::RegionKind::*;
pub use self::sty::{
Article, Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar,
BoundVariableKind, CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid,
@@ -1161,83 +1161,6 @@ impl<'tcx> OpaqueHiddenType<'tcx> {
}
}
rustc_index::newtype_index! {
/// "Universes" are used during type- and trait-checking in the
/// presence of `for<..>` binders to control what sets of names are
/// visible. Universes are arranged into a tree: the root universe
/// contains names that are always visible. Each child then adds a new
/// set of names that are visible, in addition to those of its parent.
/// We say that the child universe "extends" the parent universe with
/// new names.
///
/// To make this more concrete, consider this program:
///
/// ```ignore (illustrative)
/// struct Foo { }
/// fn bar<T>(x: T) {
/// let y: for<'a> fn(&'a u8, Foo) = ...;
/// }
/// ```
///
/// The struct name `Foo` is in the root universe U0. But the type
/// parameter `T`, introduced on `bar`, is in an extended universe U1
/// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
/// of `bar`, we cannot name `T`. Then, within the type of `y`, the
/// region `'a` is in a universe U2 that extends U1, because we can
/// name it inside the fn type but not outside.
///
/// Universes are used to do type- and trait-checking around these
/// "forall" binders (also called **universal quantification**). The
/// idea is that when, in the body of `bar`, we refer to `T` as a
/// type, we aren't referring to any type in particular, but rather a
/// kind of "fresh" type that is distinct from all other types we have
/// actually declared. This is called a **placeholder** type, and we
/// use universes to talk about this. In other words, a type name in
/// universe 0 always corresponds to some "ground" type that the user
/// declared, but a type name in a non-zero universe is a placeholder
/// type -- an idealized representative of "types in general" that we
/// use for checking generic functions.
pub struct UniverseIndex {
derive [HashStable]
DEBUG_FORMAT = "U{}",
}
}
impl UniverseIndex {
pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);
/// Returns the "next" universe index in order -- this new index
/// is considered to extend all previous universes. This
/// corresponds to entering a `forall` quantifier. So, for
/// example, suppose we have this type in universe `U`:
///
/// ```ignore (illustrative)
/// for<'a> fn(&'a u32)
/// ```
///
/// Once we "enter" into this `for<'a>` quantifier, we are in a
/// new universe that extends `U` -- in this new universe, we can
/// name the region `'a`, but that region was not nameable from
/// `U` because it was not in scope there.
pub fn next_universe(self) -> UniverseIndex {
UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
}
/// Returns `true` if `self` can name a name from `other` -- in other words,
/// if the set of names in `self` is a superset of those in
/// `other` (`self >= other`).
pub fn can_name(self, other: UniverseIndex) -> bool {
self.private >= other.private
}
/// Returns `true` if `self` cannot name some names from `other` -- in other
/// words, if the set of names in `self` is a strict subset of
/// those in `other` (`self < other`).
pub fn cannot_name(self, other: UniverseIndex) -> bool {
self.private < other.private
}
}
/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
/// regions/types/consts within the same universe simply have an unknown relationship to one