@@ -389,10 +389,8 @@ pub trait F64Ext: private::Sealed {
|
||||
#[cfg(todo)]
|
||||
fn exp2(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn ln(self) -> Self;
|
||||
|
||||
#[cfg(todo)]
|
||||
fn log(self, base: Self) -> Self;
|
||||
|
||||
fn log2(self) -> Self;
|
||||
@@ -539,13 +537,11 @@ impl F64Ext for f64 {
|
||||
exp2(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn ln(self) -> Self {
|
||||
log(self)
|
||||
}
|
||||
|
||||
#[cfg(todo)]
|
||||
#[inline]
|
||||
fn log(self, base: Self) -> Self {
|
||||
self.ln() / base.ln()
|
||||
|
||||
117
library/compiler-builtins/libm/src/math/log.rs
Normal file
117
library/compiler-builtins/libm/src/math/log.rs
Normal file
@@ -0,0 +1,117 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* log(x)
|
||||
* Return the logarithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Remez algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[inline]
|
||||
pub fn log(mut x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui = x.to_bits();
|
||||
let mut hx: u32 = (ui >> 32) as u32;
|
||||
let mut k: i32 = 0;
|
||||
|
||||
if (hx < 0x00100000) || ((hx >> 31) != 0) {
|
||||
/* x < 2**-126 */
|
||||
if ui << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if hx >> 31 != 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= x1p54;
|
||||
ui = x.to_bits();
|
||||
hx = (ui >> 32) as u32;
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
} else if hx == 0x3ff00000 && ui << 32 == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += ((hx >> 20) as i32) - 0x3ff;
|
||||
hx = (hx & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = ((hx as u64) << 32) | (ui & 0xffffffff);
|
||||
x = f64::from_bits(ui);
|
||||
|
||||
let f: f64 = x - 1.0;
|
||||
let hfsq: f64 = 0.5 * f * f;
|
||||
let s: f64 = f / (2.0 + f);
|
||||
let z: f64 = s * s;
|
||||
let w: f64 = z * z;
|
||||
let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
let r: f64 = t2 + t1;
|
||||
let dk: f64 = k as f64;
|
||||
return s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI;
|
||||
}
|
||||
@@ -15,6 +15,7 @@ mod floorf;
|
||||
mod fmodf;
|
||||
mod hypot;
|
||||
mod hypotf;
|
||||
mod log;
|
||||
mod log10;
|
||||
mod log10f;
|
||||
mod log2;
|
||||
@@ -34,7 +35,7 @@ mod truncf;
|
||||
|
||||
pub use self::{
|
||||
ceilf::ceilf, expf::expf, fabs::fabs, fabsf::fabsf, floor::floor, floorf::floorf, fmodf::fmodf,
|
||||
hypot::hypot, hypotf::hypotf, log10::log10, log10f::log10f, log2::log2, log2f::log2f,
|
||||
hypot::hypot, hypotf::hypotf, log::log, log10::log10, log10f::log10f, log2::log2, log2f::log2f,
|
||||
logf::logf, powf::powf, round::round, roundf::roundf, scalbn::scalbn, scalbnf::scalbnf,
|
||||
sqrt::sqrt, sqrtf::sqrtf, trunc::trunc, truncf::truncf,
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user