std: Remove rand crate and module

This commit removes the `rand` crate from the standard library facade as
well as the `__rand` module in the standard library. Neither of these
were used in any meaningful way in the standard library itself. The only
need for randomness in libstd is to initialize the thread-local keys of
a `HashMap`, and that unconditionally used `OsRng` defined in the
standard library anyway.

The cruft of the `rand` crate and the extra `rand` support in the
standard library makes libstd slightly more difficult to port to new
platforms, namely WebAssembly which doesn't have any randomness at all
(without interfacing with JS). The purpose of this commit is to clarify
and streamline randomness in libstd, focusing on how it's only required
in one location, hashmap seeds.

Note that the `rand` crate out of tree has almost always been a drop-in
replacement for the `rand` crate in-tree, so any usage (accidental or
purposeful) of the crate in-tree should switch to the `rand` crate on
crates.io. This then also has the further benefit of avoiding
duplication (mostly) between the two crates!
This commit is contained in:
Alex Crichton
2017-11-01 12:32:13 -07:00
parent fc77b623d3
commit 6bc8f164b0
46 changed files with 160 additions and 4379 deletions

View File

@@ -20,12 +20,14 @@ panic_unwind = { path = "../libpanic_unwind", optional = true }
panic_abort = { path = "../libpanic_abort" }
core = { path = "../libcore" }
libc = { path = "../rustc/libc_shim" }
rand = { path = "../librand" }
compiler_builtins = { path = "../rustc/compiler_builtins_shim" }
profiler_builtins = { path = "../libprofiler_builtins", optional = true }
std_unicode = { path = "../libstd_unicode" }
unwind = { path = "../libunwind" }
[dev-dependencies]
rand = "0.3"
[target.x86_64-apple-darwin.dependencies]
rustc_asan = { path = "../librustc_asan" }
rustc_tsan = { path = "../librustc_tsan" }

View File

@@ -20,8 +20,8 @@ use hash::{Hash, Hasher, BuildHasher, SipHasher13};
use iter::{FromIterator, FusedIterator};
use mem::{self, replace};
use ops::{Deref, Index, InPlace, Place, Placer};
use rand::{self, Rng};
use ptr;
use sys;
use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
use super::table::BucketState::{Empty, Full};
@@ -2461,9 +2461,7 @@ impl RandomState {
// increment one of the seeds on every RandomState creation, giving
// every corresponding HashMap a different iteration order.
thread_local!(static KEYS: Cell<(u64, u64)> = {
let r = rand::OsRng::new();
let mut r = r.expect("failed to create an OS RNG");
Cell::new((r.gen(), r.gen()))
Cell::new(sys::hashmap_random_keys())
});
KEYS.with(|keys| {

View File

@@ -356,6 +356,7 @@ use prelude::v1::*;
// Access to Bencher, etc.
#[cfg(test)] extern crate test;
#[cfg(test)] extern crate rand;
// We want to reexport a few macros from core but libcore has already been
// imported by the compiler (via our #[no_std] attribute) In this case we just
@@ -364,9 +365,6 @@ use prelude::v1::*;
debug_assert_ne, unreachable, unimplemented, write, writeln, try)]
extern crate core as __core;
#[doc(masked)]
#[allow(deprecated)]
extern crate rand as core_rand;
#[macro_use]
#[macro_reexport(vec, format)]
extern crate alloc;
@@ -504,24 +502,12 @@ mod sys;
// Private support modules
mod panicking;
mod rand;
mod memchr;
// The runtime entry point and a few unstable public functions used by the
// compiler
pub mod rt;
// Some external utilities of the standard library rely on randomness (aka
// rustc_back::TempDir and tests) and need a way to get at the OS rng we've got
// here. This module is not at all intended for stabilization as-is, however,
// but it may be stabilized long-term. As a result we're exposing a hidden,
// unstable module so we can get our build working.
#[doc(hidden)]
#[unstable(feature = "rand", issue = "27703")]
pub mod __rand {
pub use rand::{thread_rng, ThreadRng, Rng};
}
// Include a number of private modules that exist solely to provide
// the rustdoc documentation for primitive types. Using `include!`
// because rustdoc only looks for these modules at the crate level.

View File

@@ -1,286 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic
//! and so can be used to generate any type that implements `Rand`. Type inference
//! means that often a simple call to `rand::random()` or `rng.gen()` will
//! suffice, but sometimes an annotation is required, e.g. `rand::random::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block.
//! This does not mean that `/dev/random` provides better output than
//! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom
//! number generator (CSPRNG) based on entropy pool for random number generation,
//! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases.
//! However, this means that `/dev/urandom` can yield somewhat predictable randomness
//! if the entropy pool is very small, such as immediately after first booting.
//! Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy
//! pool is not initialized yet, but it does not block once initialized.
//! `getrandom(2)` was based on `getentropy(2)`, an existing system call in OpenBSD.
//! `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not.
//! If an application does not have `getrandom` and likely to be run soon after first booting,
//! or on a system with very few entropy sources, one should consider using `/dev/random` via
//! `ReaderRng`.
//! - On some systems (e.g. FreeBSD, OpenBSD and macOS) there is no difference
//! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random`
//! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.)
#![unstable(feature = "rand", issue = "27703")]
use cell::RefCell;
use fmt;
use io;
use mem;
use rc::Rc;
use sys;
#[cfg(target_pointer_width = "32")]
use core_rand::IsaacRng as IsaacWordRng;
#[cfg(target_pointer_width = "64")]
use core_rand::Isaac64Rng as IsaacWordRng;
pub use core_rand::{Rand, Rng, SeedableRng};
pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng};
pub use core_rand::reseeding;
pub mod reader;
/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone)]
pub struct StdRng {
rng: IsaacWordRng,
}
impl StdRng {
/// Create a randomly seeded instance of `StdRng`.
///
/// This is a very expensive operation as it has to read
/// randomness from the operating system and use this in an
/// expensive seeding operation. If one is only generating a small
/// number of random numbers, or doesn't need the utmost speed for
/// generating each number, `thread_rng` and/or `random` may be more
/// appropriate.
///
/// Reading the randomness from the OS may fail, and any error is
/// propagated via the `io::Result` return value.
pub fn new() -> io::Result<StdRng> {
OsRng::new().map(|mut r| StdRng { rng: r.gen() })
}
}
impl Rng for StdRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
}
impl<'a> SeedableRng<&'a [usize]> for StdRng {
fn reseed(&mut self, seed: &'a [usize]) {
// the internal RNG can just be seeded from the above
// randomness.
self.rng.reseed(unsafe {mem::transmute(seed)})
}
fn from_seed(seed: &'a [usize]) -> StdRng {
StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
}
}
/// Controls how the thread-local RNG is reseeded.
struct ThreadRngReseeder;
impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
fn reseed(&mut self, rng: &mut StdRng) {
*rng = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not reseed thread_rng: {}", e)
}
}
}
const THREAD_RNG_RESEED_THRESHOLD: usize = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
/// The thread-local RNG.
#[derive(Clone)]
pub struct ThreadRng {
rng: Rc<RefCell<ThreadRngInner>>,
}
impl fmt::Debug for ThreadRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("ThreadRng { .. }")
}
}
/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<isize>()`.
///
/// The RNG provided will reseed itself from the operating system
/// after generating a certain amount of randomness.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
// used to make space in TLS for a random number generator
thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
let r = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not initialize thread_rng: {}", e)
};
let rng = reseeding::ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
ThreadRngReseeder);
Rc::new(RefCell::new(rng))
});
ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
}
impl Rng for ThreadRng {
fn next_u32(&mut self) -> u32 {
self.rng.borrow_mut().next_u32()
}
fn next_u64(&mut self) -> u64 {
self.rng.borrow_mut().next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.borrow_mut().fill_bytes(bytes)
}
}
/// A random number generator that retrieves randomness straight from
/// the operating system. Platform sources:
///
/// - Unix-like systems (Linux, Android, macOS): read directly from
/// `/dev/urandom`, or from `getrandom(2)` system call if available.
/// - Windows: calls `CryptGenRandom`, using the default cryptographic
/// service provider with the `PROV_RSA_FULL` type.
/// - iOS: calls SecRandomCopyBytes as /dev/(u)random is sandboxed.
/// - OpenBSD: uses the `getentropy(2)` system call.
///
/// This does not block.
pub struct OsRng(sys::rand::OsRng);
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
sys::rand::OsRng::new().map(OsRng)
}
}
impl Rng for OsRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.0.fill_bytes(bytes)
}
}
#[cfg(test)]
mod tests {
use sync::mpsc::channel;
use rand::Rng;
use super::OsRng;
use thread;
#[test]
fn test_os_rng() {
let mut r = OsRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v = [0; 1000];
r.fill_bytes(&mut v);
}
#[test]
#[cfg_attr(target_os = "emscripten", ignore)]
fn test_os_rng_tasks() {
let mut txs = vec![];
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move|| {
// wait until all the threads are ready to go.
rx.recv().unwrap();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OsRng::new().unwrap();
thread::yield_now();
let mut v = [0; 1000];
for _ in 0..100 {
r.next_u32();
thread::yield_now();
r.next_u64();
thread::yield_now();
r.fill_bytes(&mut v);
thread::yield_now();
}
});
}
// start all the threads
for tx in &txs {
tx.send(()).unwrap();
}
}
}

View File

@@ -23,7 +23,6 @@
#![doc(hidden)]
// Reexport some of our utilities which are expected by other crates.
pub use panicking::{begin_panic, begin_panic_fmt, update_panic_count};

View File

@@ -554,8 +554,6 @@ impl<'a, T: ?Sized> Drop for RwLockWriteGuard<'a, T> {
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
#![allow(deprecated)] // rand
use rand::{self, Rng};
use sync::mpsc::channel;
use thread;
@@ -576,7 +574,7 @@ mod tests {
#[test]
fn frob() {
const N: usize = 10;
const N: u32 = 10;
const M: usize = 1000;
let r = Arc::new(RwLock::new(()));

View File

@@ -12,6 +12,8 @@
use io::{self, ErrorKind};
pub use self::rand::hashmap_random_keys;
pub mod args;
#[cfg(feature = "backtrace")]
pub mod backtrace;

View File

@@ -8,50 +8,6 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io;
use rand::Rng;
// FIXME: Use rand:
pub struct OsRng {
state: [u64; 2]
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng {
state: [0xBADF00D1, 0xDEADBEEF]
})
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
fn next_u64(&mut self) -> u64 {
// Store the first and second part.
let mut x = self.state[0];
let y = self.state[1];
// Put the second part into the first slot.
self.state[0] = y;
// Twist the first slot.
x ^= x << 23;
// Update the second slot.
self.state[1] = x ^ y ^ (x >> 17) ^ (y >> 26);
// Generate the final integer.
self.state[1].wrapping_add(y)
}
fn fill_bytes(&mut self, buf: &mut [u8]) {
for chunk in buf.chunks_mut(8) {
let mut rand: u64 = self.next_u64();
for b in chunk.iter_mut() {
*b = rand as u8;
rand = rand >> 8;
}
}
}
pub fn hashmap_random_keys() -> (u64, u64) {
(0, 0)
}

View File

@@ -29,6 +29,8 @@ use libc;
#[cfg(all(not(dox), target_os = "fuchsia"))] pub use os::fuchsia as platform;
#[cfg(all(not(dox), target_os = "l4re"))] pub use os::linux as platform;
pub use self::rand::hashmap_random_keys;
#[macro_use]
pub mod weak;

View File

@@ -8,20 +8,17 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::imp::OsRng;
use mem;
use slice;
fn next_u32(fill_buf: &mut FnMut(&mut [u8])) -> u32 {
let mut buf: [u8; 4] = [0; 4];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 4], u32>(buf) }
}
fn next_u64(fill_buf: &mut FnMut(&mut [u8])) -> u64 {
let mut buf: [u8; 8] = [0; 8];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 8], u64>(buf) }
pub fn hashmap_random_keys() -> (u64, u64) {
let mut v = (0, 0);
unsafe {
let view = slice::from_raw_parts_mut(&mut v as *mut _ as *mut u8,
mem::size_of_val(&v));
imp::fill_bytes(view);
}
return v
}
#[cfg(all(unix,
@@ -30,14 +27,9 @@ fn next_u64(fill_buf: &mut FnMut(&mut [u8])) -> u64 {
not(target_os = "freebsd"),
not(target_os = "fuchsia")))]
mod imp {
use self::OsRngInner::*;
use super::{next_u32, next_u64};
use fs::File;
use io;
use io::Read;
use libc;
use rand::Rng;
use rand::reader::ReaderRng;
use sys::os::errno;
#[cfg(all(target_os = "linux",
@@ -81,7 +73,7 @@ mod imp {
target_arch = "s390x"))))]
fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 }
fn getrandom_fill_bytes(v: &mut [u8]) {
fn getrandom_fill_bytes(v: &mut [u8]) -> bool {
let mut read = 0;
while read < v.len() {
let result = getrandom(&mut v[read..]);
@@ -90,18 +82,7 @@ mod imp {
if err == libc::EINTR {
continue;
} else if err == libc::EAGAIN {
// if getrandom() returns EAGAIN it would have blocked
// because the non-blocking pool (urandom) has not
// initialized in the kernel yet due to a lack of entropy
// the fallback we do here is to avoid blocking applications
// which could depend on this call without ever knowing
// they do and don't have a work around. The PRNG of
// /dev/urandom will still be used but not over a completely
// full entropy pool
let reader = File::open("/dev/urandom").expect("Unable to open /dev/urandom");
let mut reader_rng = ReaderRng::new(reader);
reader_rng.fill_bytes(&mut v[read..]);
read += v.len();
return false
} else {
panic!("unexpected getrandom error: {}", err);
}
@@ -109,6 +90,8 @@ mod imp {
read += result as usize;
}
}
return true
}
#[cfg(all(target_os = "linux",
@@ -120,6 +103,7 @@ mod imp {
target_arch = "powerpc64",
target_arch = "s390x")))]
fn is_getrandom_available() -> bool {
use io;
use sync::atomic::{AtomicBool, Ordering};
use sync::Once;
@@ -151,89 +135,37 @@ mod imp {
target_arch = "s390x"))))]
fn is_getrandom_available() -> bool { false }
pub struct OsRng {
inner: OsRngInner,
}
enum OsRngInner {
OsGetrandomRng,
OsReaderRng(ReaderRng<File>),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
if is_getrandom_available() {
return Ok(OsRng { inner: OsGetrandomRng });
}
let reader = File::open("/dev/urandom")?;
let reader_rng = ReaderRng::new(reader);
Ok(OsRng { inner: OsReaderRng(reader_rng) })
pub fn fill_bytes(v: &mut [u8]) {
// getrandom_fill_bytes here can fail if getrandom() returns EAGAIN,
// meaning it would have blocked because the non-blocking pool (urandom)
// has not initialized in the kernel yet due to a lack of entropy the
// fallback we do here is to avoid blocking applications which could
// depend on this call without ever knowing they do and don't have a
// work around. The PRNG of /dev/urandom will still be used but not
// over a completely full entropy pool
if is_getrandom_available() && getrandom_fill_bytes(v) {
return
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
match self.inner {
OsGetrandomRng => next_u32(&mut getrandom_fill_bytes),
OsReaderRng(ref mut rng) => rng.next_u32(),
}
}
fn next_u64(&mut self) -> u64 {
match self.inner {
OsGetrandomRng => next_u64(&mut getrandom_fill_bytes),
OsReaderRng(ref mut rng) => rng.next_u64(),
}
}
fn fill_bytes(&mut self, v: &mut [u8]) {
match self.inner {
OsGetrandomRng => getrandom_fill_bytes(v),
OsReaderRng(ref mut rng) => rng.fill_bytes(v)
}
}
let mut file = File::open("/dev/urandom")
.expect("failed to open /dev/urandom");
file.read_exact(v).expect("failed to read /dev/urandom");
}
}
#[cfg(target_os = "openbsd")]
mod imp {
use super::{next_u32, next_u64};
use io;
use libc;
use sys::os::errno;
use rand::Rng;
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
panic!("unexpected getentropy error: {}", errno());
}
pub fn fill_bytes(v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
panic!("unexpected getentropy error: {}", errno());
}
}
}
@@ -241,18 +173,9 @@ mod imp {
#[cfg(target_os = "ios")]
mod imp {
use super::{next_u32, next_u64};
use io;
use ptr;
use rand::Rng;
use libc::{c_int, size_t};
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
use ptr;
enum SecRandom {}
@@ -261,79 +184,41 @@ mod imp {
extern {
fn SecRandomCopyBytes(rnd: *const SecRandom,
count: size_t, bytes: *mut u8) -> c_int;
count: size_t,
bytes: *mut u8) -> c_int;
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault, v.len(),
v.as_mut_ptr())
};
if ret == -1 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
pub fn fill_bytes(v: &mut [u8]) {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault,
v.len(),
v.as_mut_ptr())
};
if ret == -1 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
}
}
#[cfg(target_os = "freebsd")]
mod imp {
use super::{next_u32, next_u64};
use io;
use libc;
use rand::Rng;
use ptr;
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
panic!("kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret, s.len(), s_len);
}
pub fn fill_bytes(v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
panic!("kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret, s.len(), s_len);
}
}
}
@@ -341,11 +226,6 @@ mod imp {
#[cfg(target_os = "fuchsia")]
mod imp {
use super::{next_u32, next_u64};
use io;
use rand::Rng;
#[link(name = "zircon")]
extern {
fn zx_cprng_draw(buffer: *mut u8, len: usize, actual: *mut usize) -> i32;
@@ -363,39 +243,18 @@ mod imp {
}
}
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mut buf = v;
while !buf.is_empty() {
let ret = getrandom(buf);
match ret {
Err(err) => {
panic!("kernel zx_cprng_draw call failed! (returned {}, buf.len() {})",
err, buf.len())
}
Ok(actual) => {
let move_buf = buf;
buf = &mut move_buf[(actual as usize)..];
}
pub fn fill_bytes(v: &mut [u8]) {
let mut buf = v;
while !buf.is_empty() {
let ret = getrandom(buf);
match ret {
Err(err) => {
panic!("kernel zx_cprng_draw call failed! (returned {}, buf.len() {})",
err, buf.len())
}
Ok(actual) => {
let move_buf = buf;
buf = &mut move_buf[(actual as usize)..];
}
}
}

View File

@@ -17,6 +17,8 @@ use os::windows::ffi::{OsStrExt, OsStringExt};
use path::PathBuf;
use time::Duration;
pub use self::rand::hashmap_random_keys;
#[macro_use] pub mod compat;
pub mod args;

View File

@@ -15,11 +15,13 @@ use io;
use mem;
use path::Path;
use ptr;
use rand::{self, Rng};
use slice;
use sync::atomic::Ordering::SeqCst;
use sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT};
use sys::c;
use sys::fs::{File, OpenOptions};
use sys::handle::Handle;
use sys::hashmap_random_keys;
////////////////////////////////////////////////////////////////////////////////
// Anonymous pipes
@@ -71,10 +73,9 @@ pub fn anon_pipe(ours_readable: bool) -> io::Result<Pipes> {
let mut reject_remote_clients_flag = c::PIPE_REJECT_REMOTE_CLIENTS;
loop {
tries += 1;
let key: u64 = rand::thread_rng().gen();
name = format!(r"\\.\pipe\__rust_anonymous_pipe1__.{}.{}",
c::GetCurrentProcessId(),
key);
random_number());
let wide_name = OsStr::new(&name)
.encode_wide()
.chain(Some(0))
@@ -156,6 +157,17 @@ pub fn anon_pipe(ours_readable: bool) -> io::Result<Pipes> {
}
}
fn random_number() -> usize {
static N: AtomicUsize = ATOMIC_USIZE_INIT;
loop {
if N.load(SeqCst) != 0 {
return N.fetch_add(1, SeqCst)
}
N.store(hashmap_random_keys().0 as usize, SeqCst);
}
}
impl AnonPipe {
pub fn handle(&self) -> &Handle { &self.inner }
pub fn into_handle(self) -> Handle { self.inner }

View File

@@ -8,45 +8,19 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io;
use mem;
use rand::Rng;
use sys::c;
pub struct OsRng;
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
let mut v = [0; 4];
self.fill_bytes(&mut v);
unsafe { mem::transmute(v) }
}
fn next_u64(&mut self) -> u64 {
let mut v = [0; 8];
self.fill_bytes(&mut v);
unsafe { mem::transmute(v) }
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// RtlGenRandom takes an ULONG (u32) for the length so we need to
// split up the buffer.
for slice in v.chunks_mut(<c::ULONG>::max_value() as usize) {
let ret = unsafe {
c::RtlGenRandom(slice.as_mut_ptr(), slice.len() as c::ULONG)
};
if ret == 0 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
}
pub fn hashmap_random_keys() -> (u64, u64) {
let mut v = (0, 0);
let ret = unsafe {
c::RtlGenRandom(&mut v as *mut _ as *mut u8,
mem::size_of_val(&v) as c::ULONG)
};
if ret == 0 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
return v
}