Merge commit '08a6d6e16b5efe217123e780398969946266268f' into sync-cg_gcc-2023-03-04
This commit is contained in:
@@ -1,8 +1,13 @@
|
||||
use std::cmp::Ordering;
|
||||
#[cfg(feature="master")]
|
||||
use gccjit::{ComparisonOp, UnaryOp};
|
||||
use gccjit::ToRValue;
|
||||
use gccjit::{BinaryOp, RValue, Type};
|
||||
|
||||
use gccjit::{BinaryOp, RValue, ToRValue, Type};
|
||||
use rustc_codegen_ssa::base::compare_simd_types;
|
||||
use rustc_codegen_ssa::common::TypeKind;
|
||||
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
|
||||
#[cfg(feature="master")]
|
||||
use rustc_codegen_ssa::errors::ExpectedPointerMutability;
|
||||
use rustc_codegen_ssa::errors::InvalidMonomorphization;
|
||||
use rustc_codegen_ssa::mir::operand::OperandRef;
|
||||
use rustc_codegen_ssa::mir::place::PlaceRef;
|
||||
use rustc_codegen_ssa::traits::{BaseTypeMethods, BuilderMethods};
|
||||
@@ -14,18 +19,21 @@ use rustc_span::{sym, Span, Symbol};
|
||||
use rustc_target::abi::Align;
|
||||
|
||||
use crate::builder::Builder;
|
||||
#[cfg(feature="master")]
|
||||
use crate::context::CodegenCx;
|
||||
#[cfg(feature="master")]
|
||||
use crate::errors::{InvalidMonomorphizationExpectedSignedUnsigned, InvalidMonomorphizationInsertedType};
|
||||
use crate::errors::{
|
||||
InvalidMonomorphizationExpectedSignedUnsigned, InvalidMonomorphizationExpectedSimd,
|
||||
InvalidMonomorphizationInsertedType, InvalidMonomorphizationInvalidBitmask,
|
||||
InvalidMonomorphizationExpectedSimd,
|
||||
InvalidMonomorphizationInvalidBitmask,
|
||||
InvalidMonomorphizationInvalidFloatVector, InvalidMonomorphizationMaskType,
|
||||
InvalidMonomorphizationMismatchedLengths, InvalidMonomorphizationNotFloat,
|
||||
InvalidMonomorphizationReturnElement, InvalidMonomorphizationReturnIntegerType,
|
||||
InvalidMonomorphizationReturnLength, InvalidMonomorphizationReturnLengthInputType,
|
||||
InvalidMonomorphizationReturnType, InvalidMonomorphizationSimdShuffle,
|
||||
InvalidMonomorphizationUnrecognized, InvalidMonomorphizationUnsupportedCast,
|
||||
InvalidMonomorphizationUnsupportedElement, InvalidMonomorphizationUnsupportedOperation,
|
||||
InvalidMonomorphizationUnrecognized, InvalidMonomorphizationUnsupportedElement,
|
||||
InvalidMonomorphizationUnsupportedOperation,
|
||||
};
|
||||
use crate::intrinsic;
|
||||
|
||||
pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
bx: &mut Builder<'a, 'gcc, 'tcx>,
|
||||
@@ -105,14 +113,19 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
let arg1_vector_type = arg1_type.unqualified().dyncast_vector().expect("vector type");
|
||||
let arg1_element_type = arg1_vector_type.get_element_type();
|
||||
|
||||
// NOTE: since the arguments can be vectors of floats, make sure the mask is a vector of
|
||||
// integer.
|
||||
let mask_element_type = bx.type_ix(arg1_element_type.get_size() as u64 * 8);
|
||||
let vector_mask_type = bx.context.new_vector_type(mask_element_type, arg1_vector_type.get_num_units() as u64);
|
||||
|
||||
let mut elements = vec![];
|
||||
let one = bx.context.new_rvalue_one(mask.get_type());
|
||||
for _ in 0..len {
|
||||
let element = bx.context.new_cast(None, mask & one, arg1_element_type);
|
||||
let element = bx.context.new_cast(None, mask & one, mask_element_type);
|
||||
elements.push(element);
|
||||
mask = mask >> one;
|
||||
}
|
||||
let vector_mask = bx.context.new_rvalue_from_vector(None, arg1_type, &elements);
|
||||
let vector_mask = bx.context.new_rvalue_from_vector(None, vector_mask_type, &elements);
|
||||
|
||||
return Ok(bx.vector_select(vector_mask, arg1, args[2].immediate()));
|
||||
}
|
||||
@@ -210,48 +223,12 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
let vector = args[0].immediate();
|
||||
let index = args[1].immediate();
|
||||
let value = args[2].immediate();
|
||||
// TODO(antoyo): use a recursive unqualified() here.
|
||||
let vector_type = vector.get_type().unqualified().dyncast_vector().expect("vector type");
|
||||
let element_type = vector_type.get_element_type();
|
||||
// NOTE: we cannot cast to an array and assign to its element here because the value might
|
||||
// not be an l-value. So, call a builtin to set the element.
|
||||
// TODO(antoyo): perhaps we could create a new vector or maybe there's a GIMPLE instruction for that?
|
||||
// TODO(antoyo): don't use target specific builtins here.
|
||||
let func_name = match in_len {
|
||||
2 => {
|
||||
if element_type == bx.i64_type {
|
||||
"__builtin_ia32_vec_set_v2di"
|
||||
} else {
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
4 => {
|
||||
if element_type == bx.i32_type {
|
||||
"__builtin_ia32_vec_set_v4si"
|
||||
} else {
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
8 => {
|
||||
if element_type == bx.i16_type {
|
||||
"__builtin_ia32_vec_set_v8hi"
|
||||
} else {
|
||||
unimplemented!();
|
||||
}
|
||||
}
|
||||
_ => unimplemented!("Len: {}", in_len),
|
||||
};
|
||||
let builtin = bx.context.get_target_builtin_function(func_name);
|
||||
let param1_type = builtin.get_param(0).to_rvalue().get_type();
|
||||
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
|
||||
let vector = bx.cx.bitcast_if_needed(vector, param1_type);
|
||||
let result = bx.context.new_call(
|
||||
None,
|
||||
builtin,
|
||||
&[vector, value, bx.context.new_cast(None, index, bx.int_type)],
|
||||
);
|
||||
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
|
||||
return Ok(bx.context.new_bitcast(None, result, vector.get_type()));
|
||||
let variable = bx.current_func().new_local(None, vector.get_type(), "new_vector");
|
||||
bx.llbb().add_assignment(None, variable, vector);
|
||||
let lvalue = bx.context.new_vector_access(None, variable.to_rvalue(), index);
|
||||
// TODO(antoyo): if simd_insert is constant, use BIT_REF.
|
||||
bx.llbb().add_assignment(None, lvalue, value);
|
||||
return Ok(variable.to_rvalue());
|
||||
}
|
||||
|
||||
#[cfg(feature = "master")]
|
||||
@@ -280,7 +257,8 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
return Ok(bx.vector_select(args[0].immediate(), args[1].immediate(), args[2].immediate()));
|
||||
}
|
||||
|
||||
if name == sym::simd_cast {
|
||||
#[cfg(feature="master")]
|
||||
if name == sym::simd_cast || name == sym::simd_as {
|
||||
require_simd!(ret_ty, "return");
|
||||
let (out_len, out_elem) = ret_ty.simd_size_and_type(bx.tcx());
|
||||
require!(
|
||||
@@ -301,125 +279,40 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
|
||||
enum Style {
|
||||
Float,
|
||||
Int(/* is signed? */ bool),
|
||||
Int,
|
||||
Unsupported,
|
||||
}
|
||||
|
||||
let (in_style, in_width) = match in_elem.kind() {
|
||||
// vectors of pointer-sized integers should've been
|
||||
// disallowed before here, so this unwrap is safe.
|
||||
ty::Int(i) => (
|
||||
Style::Int(true),
|
||||
i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
||||
),
|
||||
ty::Uint(u) => (
|
||||
Style::Int(false),
|
||||
u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
||||
),
|
||||
ty::Float(f) => (Style::Float, f.bit_width()),
|
||||
_ => (Style::Unsupported, 0),
|
||||
};
|
||||
let (out_style, out_width) = match out_elem.kind() {
|
||||
ty::Int(i) => (
|
||||
Style::Int(true),
|
||||
i.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
||||
),
|
||||
ty::Uint(u) => (
|
||||
Style::Int(false),
|
||||
u.normalize(bx.tcx().sess.target.pointer_width).bit_width().unwrap(),
|
||||
),
|
||||
ty::Float(f) => (Style::Float, f.bit_width()),
|
||||
_ => (Style::Unsupported, 0),
|
||||
};
|
||||
|
||||
let extend = |in_type, out_type| {
|
||||
let vector_type = bx.context.new_vector_type(out_type, 8);
|
||||
let vector = args[0].immediate();
|
||||
let array_type = bx.context.new_array_type(None, in_type, 8);
|
||||
// TODO(antoyo): switch to using new_vector_access or __builtin_convertvector for vector casting.
|
||||
let array = bx.context.new_bitcast(None, vector, array_type);
|
||||
|
||||
let cast_vec_element = |index| {
|
||||
let index = bx.context.new_rvalue_from_int(bx.int_type, index);
|
||||
bx.context.new_cast(
|
||||
None,
|
||||
bx.context.new_array_access(None, array, index).to_rvalue(),
|
||||
out_type,
|
||||
)
|
||||
let in_style =
|
||||
match in_elem.kind() {
|
||||
ty::Int(_) | ty::Uint(_) => Style::Int,
|
||||
ty::Float(_) => Style::Float,
|
||||
_ => Style::Unsupported,
|
||||
};
|
||||
|
||||
bx.context.new_rvalue_from_vector(
|
||||
None,
|
||||
vector_type,
|
||||
&[
|
||||
cast_vec_element(0),
|
||||
cast_vec_element(1),
|
||||
cast_vec_element(2),
|
||||
cast_vec_element(3),
|
||||
cast_vec_element(4),
|
||||
cast_vec_element(5),
|
||||
cast_vec_element(6),
|
||||
cast_vec_element(7),
|
||||
],
|
||||
)
|
||||
};
|
||||
let out_style =
|
||||
match out_elem.kind() {
|
||||
ty::Int(_) | ty::Uint(_) => Style::Int,
|
||||
ty::Float(_) => Style::Float,
|
||||
_ => Style::Unsupported,
|
||||
};
|
||||
|
||||
match (in_style, out_style) {
|
||||
(Style::Int(in_is_signed), Style::Int(_)) => {
|
||||
return Ok(match in_width.cmp(&out_width) {
|
||||
Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty),
|
||||
Ordering::Equal => args[0].immediate(),
|
||||
Ordering::Less => {
|
||||
if in_is_signed {
|
||||
match (in_width, out_width) {
|
||||
// FIXME(antoyo): the function _mm_cvtepi8_epi16 should directly
|
||||
// call an intrinsic equivalent to __builtin_ia32_pmovsxbw128 so that
|
||||
// we can generate a call to it.
|
||||
(8, 16) => extend(bx.i8_type, bx.i16_type),
|
||||
(8, 32) => extend(bx.i8_type, bx.i32_type),
|
||||
(8, 64) => extend(bx.i8_type, bx.i64_type),
|
||||
(16, 32) => extend(bx.i16_type, bx.i32_type),
|
||||
(32, 64) => extend(bx.i32_type, bx.i64_type),
|
||||
(16, 64) => extend(bx.i16_type, bx.i64_type),
|
||||
_ => unimplemented!("in: {}, out: {}", in_width, out_width),
|
||||
}
|
||||
} else {
|
||||
match (in_width, out_width) {
|
||||
(8, 16) => extend(bx.u8_type, bx.u16_type),
|
||||
(8, 32) => extend(bx.u8_type, bx.u32_type),
|
||||
(8, 64) => extend(bx.u8_type, bx.u64_type),
|
||||
(16, 32) => extend(bx.u16_type, bx.u32_type),
|
||||
(16, 64) => extend(bx.u16_type, bx.u64_type),
|
||||
(32, 64) => extend(bx.u32_type, bx.u64_type),
|
||||
_ => unimplemented!("in: {}, out: {}", in_width, out_width),
|
||||
}
|
||||
}
|
||||
(Style::Unsupported, Style::Unsupported) => {
|
||||
require!(
|
||||
false,
|
||||
InvalidMonomorphization::UnsupportedCast {
|
||||
span,
|
||||
name,
|
||||
in_ty,
|
||||
in_elem,
|
||||
ret_ty,
|
||||
out_elem
|
||||
}
|
||||
});
|
||||
}
|
||||
(Style::Int(_), Style::Float) => {
|
||||
// TODO: add support for internal functions in libgccjit to get access to IFN_VEC_CONVERT which is
|
||||
// doing like __builtin_convertvector?
|
||||
// Or maybe provide convert_vector as an API since it might not easy to get the
|
||||
// types of internal functions.
|
||||
unimplemented!();
|
||||
}
|
||||
(Style::Float, Style::Int(_)) => {
|
||||
unimplemented!();
|
||||
}
|
||||
(Style::Float, Style::Float) => {
|
||||
unimplemented!();
|
||||
}
|
||||
_ => { /* Unsupported. Fallthrough. */ }
|
||||
);
|
||||
},
|
||||
_ => return Ok(bx.context.convert_vector(None, args[0].immediate(), llret_ty)),
|
||||
}
|
||||
return_error!(InvalidMonomorphizationUnsupportedCast {
|
||||
span,
|
||||
name,
|
||||
in_ty,
|
||||
in_elem,
|
||||
ret_ty,
|
||||
out_elem
|
||||
});
|
||||
}
|
||||
|
||||
macro_rules! arith_binary {
|
||||
@@ -436,6 +329,71 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
}
|
||||
}
|
||||
|
||||
if name == sym::simd_bitmask {
|
||||
// The `fn simd_bitmask(vector) -> unsigned integer` intrinsic takes a
|
||||
// vector mask and returns the most significant bit (MSB) of each lane in the form
|
||||
// of either:
|
||||
// * an unsigned integer
|
||||
// * an array of `u8`
|
||||
// If the vector has less than 8 lanes, a u8 is returned with zeroed trailing bits.
|
||||
//
|
||||
// The bit order of the result depends on the byte endianness, LSB-first for little
|
||||
// endian and MSB-first for big endian.
|
||||
|
||||
let vector = args[0].immediate();
|
||||
let vector_type = vector.get_type().dyncast_vector().expect("vector type");
|
||||
let elem_type = vector_type.get_element_type();
|
||||
|
||||
let expected_int_bits = in_len.max(8);
|
||||
let expected_bytes = expected_int_bits / 8 + ((expected_int_bits % 8 > 0) as u64);
|
||||
|
||||
// FIXME(antoyo): that's not going to work for masks bigger than 128 bits.
|
||||
let result_type = bx.type_ix(expected_int_bits);
|
||||
let mut result = bx.context.new_rvalue_zero(result_type);
|
||||
|
||||
let elem_size = elem_type.get_size() * 8;
|
||||
let sign_shift = bx.context.new_rvalue_from_int(elem_type, elem_size as i32 - 1);
|
||||
let one = bx.context.new_rvalue_one(elem_type);
|
||||
|
||||
let mut shift = 0;
|
||||
for i in 0..in_len {
|
||||
let elem = bx.extract_element(vector, bx.context.new_rvalue_from_int(bx.int_type, i as i32));
|
||||
let shifted = elem >> sign_shift;
|
||||
let masked = shifted & one;
|
||||
result = result | (bx.context.new_cast(None, masked, result_type) << bx.context.new_rvalue_from_int(result_type, shift));
|
||||
shift += 1;
|
||||
}
|
||||
|
||||
match ret_ty.kind() {
|
||||
ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => {
|
||||
// Zero-extend iN to the bitmask type:
|
||||
return Ok(result);
|
||||
}
|
||||
ty::Array(elem, len)
|
||||
if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
|
||||
&& len.try_eval_target_usize(bx.tcx, ty::ParamEnv::reveal_all())
|
||||
== Some(expected_bytes) =>
|
||||
{
|
||||
// Zero-extend iN to the array length:
|
||||
let ze = bx.zext(result, bx.type_ix(expected_bytes * 8));
|
||||
|
||||
// Convert the integer to a byte array
|
||||
let ptr = bx.alloca(bx.type_ix(expected_bytes * 8), Align::ONE);
|
||||
bx.store(ze, ptr, Align::ONE);
|
||||
let array_ty = bx.type_array(bx.type_i8(), expected_bytes);
|
||||
let ptr = bx.pointercast(ptr, bx.cx.type_ptr_to(array_ty));
|
||||
return Ok(bx.load(array_ty, ptr, Align::ONE));
|
||||
}
|
||||
_ => return_error!(InvalidMonomorphization::CannotReturn {
|
||||
span,
|
||||
name,
|
||||
ret_ty,
|
||||
expected_int_bits,
|
||||
expected_bytes
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
fn simd_simple_float_intrinsic<'gcc, 'tcx>(
|
||||
name: Symbol,
|
||||
in_elem: Ty<'_>,
|
||||
@@ -451,55 +409,66 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
return Err(());
|
||||
}};
|
||||
}
|
||||
let (elem_ty_str, elem_ty) = if let ty::Float(f) = in_elem.kind() {
|
||||
let elem_ty = bx.cx.type_float_from_ty(*f);
|
||||
match f.bit_width() {
|
||||
32 => ("f32", elem_ty),
|
||||
64 => ("f64", elem_ty),
|
||||
_ => {
|
||||
return_error!(InvalidMonomorphizationInvalidFloatVector {
|
||||
span,
|
||||
name,
|
||||
elem_ty: f.name_str(),
|
||||
vec_ty: in_ty
|
||||
});
|
||||
let (elem_ty_str, elem_ty) =
|
||||
if let ty::Float(f) = in_elem.kind() {
|
||||
let elem_ty = bx.cx.type_float_from_ty(*f);
|
||||
match f.bit_width() {
|
||||
32 => ("f", elem_ty),
|
||||
64 => ("", elem_ty),
|
||||
_ => {
|
||||
return_error!(InvalidMonomorphizationInvalidFloatVector { span, name, elem_ty: f.name_str(), vec_ty: in_ty });
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return_error!(InvalidMonomorphizationNotFloat { span, name, ty: in_ty });
|
||||
};
|
||||
else {
|
||||
return_error!(InvalidMonomorphizationNotFloat { span, name, ty: in_ty });
|
||||
};
|
||||
|
||||
let vec_ty = bx.cx.type_vector(elem_ty, in_len);
|
||||
|
||||
let (intr_name, fn_ty) = match name {
|
||||
sym::simd_ceil => ("ceil", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_fabs => ("fabs", bx.type_func(&[vec_ty], vec_ty)), // TODO(antoyo): pand with 170141183420855150465331762880109871103
|
||||
sym::simd_fcos => ("cos", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_fexp2 => ("exp2", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_fexp => ("exp", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_flog10 => ("log10", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_flog2 => ("log2", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_flog => ("log", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_floor => ("floor", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_fma => ("fma", bx.type_func(&[vec_ty, vec_ty, vec_ty], vec_ty)),
|
||||
sym::simd_fpowi => ("powi", bx.type_func(&[vec_ty, bx.type_i32()], vec_ty)),
|
||||
sym::simd_fpow => ("pow", bx.type_func(&[vec_ty, vec_ty], vec_ty)),
|
||||
sym::simd_fsin => ("sin", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_fsqrt => ("sqrt", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_round => ("round", bx.type_func(&[vec_ty], vec_ty)),
|
||||
sym::simd_trunc => ("trunc", bx.type_func(&[vec_ty], vec_ty)),
|
||||
_ => return_error!(InvalidMonomorphizationUnrecognized { span, name }),
|
||||
};
|
||||
let llvm_name = &format!("llvm.{0}.v{1}{2}", intr_name, in_len, elem_ty_str);
|
||||
let function = intrinsic::llvm::intrinsic(llvm_name, &bx.cx);
|
||||
let function: RValue<'gcc> = unsafe { std::mem::transmute(function) };
|
||||
let c = bx.call(
|
||||
fn_ty,
|
||||
None,
|
||||
function,
|
||||
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
|
||||
None,
|
||||
);
|
||||
let intr_name =
|
||||
match name {
|
||||
sym::simd_ceil => "ceil",
|
||||
sym::simd_fabs => "fabs", // TODO(antoyo): pand with 170141183420855150465331762880109871103
|
||||
sym::simd_fcos => "cos",
|
||||
sym::simd_fexp2 => "exp2",
|
||||
sym::simd_fexp => "exp",
|
||||
sym::simd_flog10 => "log10",
|
||||
sym::simd_flog2 => "log2",
|
||||
sym::simd_flog => "log",
|
||||
sym::simd_floor => "floor",
|
||||
sym::simd_fma => "fma",
|
||||
sym::simd_fpowi => "__builtin_powi",
|
||||
sym::simd_fpow => "pow",
|
||||
sym::simd_fsin => "sin",
|
||||
sym::simd_fsqrt => "sqrt",
|
||||
sym::simd_round => "round",
|
||||
sym::simd_trunc => "trunc",
|
||||
_ => return_error!(InvalidMonomorphizationUnrecognized { span, name })
|
||||
};
|
||||
let builtin_name = format!("{}{}", intr_name, elem_ty_str);
|
||||
let funcs = bx.cx.functions.borrow();
|
||||
let function = funcs.get(&builtin_name).unwrap_or_else(|| panic!("unable to find builtin function {}", builtin_name));
|
||||
|
||||
// TODO(antoyo): add platform-specific behavior here for architectures that have these
|
||||
// intrinsics as instructions (for instance, gpus)
|
||||
let mut vector_elements = vec![];
|
||||
for i in 0..in_len {
|
||||
let index = bx.context.new_rvalue_from_long(bx.ulong_type, i as i64);
|
||||
// we have to treat fpowi specially, since fpowi's second argument is always an i32
|
||||
let arguments = if name == sym::simd_fpowi {
|
||||
vec![
|
||||
bx.extract_element(args[0].immediate(), index).to_rvalue(),
|
||||
args[1].immediate(),
|
||||
]
|
||||
} else {
|
||||
args.iter()
|
||||
.map(|arg| bx.extract_element(arg.immediate(), index).to_rvalue())
|
||||
.collect()
|
||||
};
|
||||
vector_elements.push(bx.context.new_call(None, *function, &arguments));
|
||||
}
|
||||
let c = bx.context.new_rvalue_from_vector(None, vec_ty, &vector_elements);
|
||||
Ok(c)
|
||||
}
|
||||
|
||||
@@ -525,6 +494,297 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
return simd_simple_float_intrinsic(name, in_elem, in_ty, in_len, bx, span, args);
|
||||
}
|
||||
|
||||
#[cfg(feature="master")]
|
||||
fn vector_ty<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, elem_ty: Ty<'tcx>, vec_len: u64) -> Type<'gcc> {
|
||||
// FIXME: use cx.layout_of(ty).llvm_type() ?
|
||||
let elem_ty = match *elem_ty.kind() {
|
||||
ty::Int(v) => cx.type_int_from_ty(v),
|
||||
ty::Uint(v) => cx.type_uint_from_ty(v),
|
||||
ty::Float(v) => cx.type_float_from_ty(v),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
cx.type_vector(elem_ty, vec_len)
|
||||
}
|
||||
|
||||
#[cfg(feature="master")]
|
||||
fn gather<'a, 'gcc, 'tcx>(default: RValue<'gcc>, pointers: RValue<'gcc>, mask: RValue<'gcc>, pointer_count: usize, bx: &mut Builder<'a, 'gcc, 'tcx>, in_len: u64, underlying_ty: Ty<'tcx>, invert: bool) -> RValue<'gcc> {
|
||||
let vector_type =
|
||||
if pointer_count > 1 {
|
||||
bx.context.new_vector_type(bx.usize_type, in_len)
|
||||
}
|
||||
else {
|
||||
vector_ty(bx, underlying_ty, in_len)
|
||||
};
|
||||
let elem_type = vector_type.dyncast_vector().expect("vector type").get_element_type();
|
||||
|
||||
let mut values = vec![];
|
||||
for i in 0..in_len {
|
||||
let index = bx.context.new_rvalue_from_long(bx.i32_type, i as i64);
|
||||
let int = bx.context.new_vector_access(None, pointers, index).to_rvalue();
|
||||
|
||||
let ptr_type = elem_type.make_pointer();
|
||||
let ptr = bx.context.new_bitcast(None, int, ptr_type);
|
||||
let value = ptr.dereference(None).to_rvalue();
|
||||
values.push(value);
|
||||
}
|
||||
|
||||
let vector = bx.context.new_rvalue_from_vector(None, vector_type, &values);
|
||||
|
||||
let mut mask_types = vec![];
|
||||
let mut mask_values = vec![];
|
||||
for i in 0..in_len {
|
||||
let index = bx.context.new_rvalue_from_long(bx.i32_type, i as i64);
|
||||
mask_types.push(bx.context.new_field(None, bx.i32_type, "m"));
|
||||
let mask_value = bx.context.new_vector_access(None, mask, index).to_rvalue();
|
||||
let masked = bx.context.new_rvalue_from_int(bx.i32_type, in_len as i32) & mask_value;
|
||||
let value = index + masked;
|
||||
mask_values.push(value);
|
||||
}
|
||||
let mask_type = bx.context.new_struct_type(None, "mask_type", &mask_types);
|
||||
let mask = bx.context.new_struct_constructor(None, mask_type.as_type(), None, &mask_values);
|
||||
|
||||
if invert {
|
||||
bx.shuffle_vector(vector, default, mask)
|
||||
}
|
||||
else {
|
||||
bx.shuffle_vector(default, vector, mask)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature="master")]
|
||||
if name == sym::simd_gather {
|
||||
// simd_gather(values: <N x T>, pointers: <N x *_ T>,
|
||||
// mask: <N x i{M}>) -> <N x T>
|
||||
// * N: number of elements in the input vectors
|
||||
// * T: type of the element to load
|
||||
// * M: any integer width is supported, will be truncated to i1
|
||||
|
||||
// All types must be simd vector types
|
||||
require_simd!(in_ty, "first");
|
||||
require_simd!(arg_tys[1], "second");
|
||||
require_simd!(arg_tys[2], "third");
|
||||
require_simd!(ret_ty, "return");
|
||||
|
||||
// Of the same length:
|
||||
let (out_len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
|
||||
let (out_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
|
||||
require!(
|
||||
in_len == out_len,
|
||||
InvalidMonomorphization::SecondArgumentLength {
|
||||
span,
|
||||
name,
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_ty: arg_tys[1],
|
||||
out_len
|
||||
}
|
||||
);
|
||||
require!(
|
||||
in_len == out_len2,
|
||||
InvalidMonomorphization::ThirdArgumentLength {
|
||||
span,
|
||||
name,
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_ty: arg_tys[2],
|
||||
out_len: out_len2
|
||||
}
|
||||
);
|
||||
|
||||
// The return type must match the first argument type
|
||||
require!(
|
||||
ret_ty == in_ty,
|
||||
InvalidMonomorphization::ExpectedReturnType { span, name, in_ty, ret_ty }
|
||||
);
|
||||
|
||||
// This counts how many pointers
|
||||
fn ptr_count(t: Ty<'_>) -> usize {
|
||||
match t.kind() {
|
||||
ty::RawPtr(p) => 1 + ptr_count(p.ty),
|
||||
_ => 0,
|
||||
}
|
||||
}
|
||||
|
||||
// Non-ptr type
|
||||
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
|
||||
match t.kind() {
|
||||
ty::RawPtr(p) => non_ptr(p.ty),
|
||||
_ => t,
|
||||
}
|
||||
}
|
||||
|
||||
// The second argument must be a simd vector with an element type that's a pointer
|
||||
// to the element type of the first argument
|
||||
let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
|
||||
let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
|
||||
let (pointer_count, underlying_ty) = match element_ty1.kind() {
|
||||
ty::RawPtr(p) if p.ty == in_elem => (ptr_count(element_ty1), non_ptr(element_ty1)),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
InvalidMonomorphization::ExpectedElementType {
|
||||
span,
|
||||
name,
|
||||
expected_element: element_ty1,
|
||||
second_arg: arg_tys[1],
|
||||
in_elem,
|
||||
in_ty,
|
||||
mutability: ExpectedPointerMutability::Not,
|
||||
}
|
||||
);
|
||||
unreachable!();
|
||||
}
|
||||
};
|
||||
assert!(pointer_count > 0);
|
||||
assert_eq!(pointer_count - 1, ptr_count(element_ty0));
|
||||
assert_eq!(underlying_ty, non_ptr(element_ty0));
|
||||
|
||||
// The element type of the third argument must be a signed integer type of any width:
|
||||
let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
|
||||
match element_ty2.kind() {
|
||||
ty::Int(_) => (),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
InvalidMonomorphization::ThirdArgElementType {
|
||||
span,
|
||||
name,
|
||||
expected_element: element_ty2,
|
||||
third_arg: arg_tys[2]
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
return Ok(gather(args[0].immediate(), args[1].immediate(), args[2].immediate(), pointer_count, bx, in_len, underlying_ty, false));
|
||||
}
|
||||
|
||||
#[cfg(feature="master")]
|
||||
if name == sym::simd_scatter {
|
||||
// simd_scatter(values: <N x T>, pointers: <N x *mut T>,
|
||||
// mask: <N x i{M}>) -> ()
|
||||
// * N: number of elements in the input vectors
|
||||
// * T: type of the element to load
|
||||
// * M: any integer width is supported, will be truncated to i1
|
||||
|
||||
// All types must be simd vector types
|
||||
require_simd!(in_ty, "first");
|
||||
require_simd!(arg_tys[1], "second");
|
||||
require_simd!(arg_tys[2], "third");
|
||||
|
||||
// Of the same length:
|
||||
let (element_len1, _) = arg_tys[1].simd_size_and_type(bx.tcx());
|
||||
let (element_len2, _) = arg_tys[2].simd_size_and_type(bx.tcx());
|
||||
require!(
|
||||
in_len == element_len1,
|
||||
InvalidMonomorphization::SecondArgumentLength {
|
||||
span,
|
||||
name,
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_ty: arg_tys[1],
|
||||
out_len: element_len1
|
||||
}
|
||||
);
|
||||
require!(
|
||||
in_len == element_len2,
|
||||
InvalidMonomorphization::ThirdArgumentLength {
|
||||
span,
|
||||
name,
|
||||
in_len,
|
||||
in_ty,
|
||||
arg_ty: arg_tys[2],
|
||||
out_len: element_len2
|
||||
}
|
||||
);
|
||||
|
||||
// This counts how many pointers
|
||||
fn ptr_count(t: Ty<'_>) -> usize {
|
||||
match t.kind() {
|
||||
ty::RawPtr(p) => 1 + ptr_count(p.ty),
|
||||
_ => 0,
|
||||
}
|
||||
}
|
||||
|
||||
// Non-ptr type
|
||||
fn non_ptr(t: Ty<'_>) -> Ty<'_> {
|
||||
match t.kind() {
|
||||
ty::RawPtr(p) => non_ptr(p.ty),
|
||||
_ => t,
|
||||
}
|
||||
}
|
||||
|
||||
// The second argument must be a simd vector with an element type that's a pointer
|
||||
// to the element type of the first argument
|
||||
let (_, element_ty0) = arg_tys[0].simd_size_and_type(bx.tcx());
|
||||
let (_, element_ty1) = arg_tys[1].simd_size_and_type(bx.tcx());
|
||||
let (_, element_ty2) = arg_tys[2].simd_size_and_type(bx.tcx());
|
||||
let (pointer_count, underlying_ty) = match element_ty1.kind() {
|
||||
ty::RawPtr(p) if p.ty == in_elem && p.mutbl == hir::Mutability::Mut => {
|
||||
(ptr_count(element_ty1), non_ptr(element_ty1))
|
||||
}
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
InvalidMonomorphization::ExpectedElementType {
|
||||
span,
|
||||
name,
|
||||
expected_element: element_ty1,
|
||||
second_arg: arg_tys[1],
|
||||
in_elem,
|
||||
in_ty,
|
||||
mutability: ExpectedPointerMutability::Mut,
|
||||
}
|
||||
);
|
||||
unreachable!();
|
||||
}
|
||||
};
|
||||
assert!(pointer_count > 0);
|
||||
assert_eq!(pointer_count - 1, ptr_count(element_ty0));
|
||||
assert_eq!(underlying_ty, non_ptr(element_ty0));
|
||||
|
||||
// The element type of the third argument must be a signed integer type of any width:
|
||||
match element_ty2.kind() {
|
||||
ty::Int(_) => (),
|
||||
_ => {
|
||||
require!(
|
||||
false,
|
||||
InvalidMonomorphization::ThirdArgElementType {
|
||||
span,
|
||||
name,
|
||||
expected_element: element_ty2,
|
||||
third_arg: arg_tys[2]
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
let result = gather(args[0].immediate(), args[1].immediate(), args[2].immediate(), pointer_count, bx, in_len, underlying_ty, true);
|
||||
|
||||
let pointers = args[1].immediate();
|
||||
|
||||
let vector_type =
|
||||
if pointer_count > 1 {
|
||||
bx.context.new_vector_type(bx.usize_type, in_len)
|
||||
}
|
||||
else {
|
||||
vector_ty(bx, underlying_ty, in_len)
|
||||
};
|
||||
let elem_type = vector_type.dyncast_vector().expect("vector type").get_element_type();
|
||||
|
||||
for i in 0..in_len {
|
||||
let index = bx.context.new_rvalue_from_int(bx.int_type, i as i32);
|
||||
let value = bx.context.new_vector_access(None, result, index);
|
||||
|
||||
let int = bx.context.new_vector_access(None, pointers, index).to_rvalue();
|
||||
let ptr_type = elem_type.make_pointer();
|
||||
let ptr = bx.context.new_bitcast(None, int, ptr_type);
|
||||
bx.llbb().add_assignment(None, ptr.dereference(None), value);
|
||||
}
|
||||
|
||||
return Ok(bx.context.new_rvalue_zero(bx.i32_type));
|
||||
}
|
||||
|
||||
arith_binary! {
|
||||
simd_add: Uint, Int => add, Float => fadd;
|
||||
simd_sub: Uint, Int => sub, Float => fsub;
|
||||
@@ -536,6 +796,8 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
simd_and: Uint, Int => and;
|
||||
simd_or: Uint, Int => or; // FIXME(antoyo): calling `or` might not work on vectors.
|
||||
simd_xor: Uint, Int => xor;
|
||||
simd_fmin: Float => vector_fmin;
|
||||
simd_fmax: Float => vector_fmax;
|
||||
}
|
||||
|
||||
macro_rules! arith_unary {
|
||||
@@ -562,10 +824,11 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
let rhs = args[1].immediate();
|
||||
let is_add = name == sym::simd_saturating_add;
|
||||
let ptr_bits = bx.tcx().data_layout.pointer_size.bits() as _;
|
||||
let (signed, elem_width, elem_ty) = match *in_elem.kind() {
|
||||
ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_int_from_ty(i)),
|
||||
ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits), bx.cx.type_uint_from_ty(i)),
|
||||
_ => {
|
||||
let (signed, elem_width, elem_ty) =
|
||||
match *in_elem.kind() {
|
||||
ty::Int(i) => (true, i.bit_width().unwrap_or(ptr_bits) / 8, bx.cx.type_int_from_ty(i)),
|
||||
ty::Uint(i) => (false, i.bit_width().unwrap_or(ptr_bits) / 8, bx.cx.type_uint_from_ty(i)),
|
||||
_ => {
|
||||
return_error!(InvalidMonomorphizationExpectedSignedUnsigned {
|
||||
span,
|
||||
name,
|
||||
@@ -574,33 +837,78 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
});
|
||||
}
|
||||
};
|
||||
let builtin_name = match (signed, is_add, in_len, elem_width) {
|
||||
(true, true, 32, 8) => "__builtin_ia32_paddsb256", // TODO(antoyo): cast arguments to unsigned.
|
||||
(false, true, 32, 8) => "__builtin_ia32_paddusb256",
|
||||
(true, true, 16, 16) => "__builtin_ia32_paddsw256",
|
||||
(false, true, 16, 16) => "__builtin_ia32_paddusw256",
|
||||
(true, false, 16, 16) => "__builtin_ia32_psubsw256",
|
||||
(false, false, 16, 16) => "__builtin_ia32_psubusw256",
|
||||
(true, false, 32, 8) => "__builtin_ia32_psubsb256",
|
||||
(false, false, 32, 8) => "__builtin_ia32_psubusb256",
|
||||
_ => unimplemented!(
|
||||
"signed: {}, is_add: {}, in_len: {}, elem_width: {}",
|
||||
signed,
|
||||
is_add,
|
||||
in_len,
|
||||
elem_width
|
||||
),
|
||||
};
|
||||
let vec_ty = bx.cx.type_vector(elem_ty, in_len as u64);
|
||||
|
||||
let func = bx.context.get_target_builtin_function(builtin_name);
|
||||
let param1_type = func.get_param(0).to_rvalue().get_type();
|
||||
let param2_type = func.get_param(1).to_rvalue().get_type();
|
||||
let lhs = bx.cx.bitcast_if_needed(lhs, param1_type);
|
||||
let rhs = bx.cx.bitcast_if_needed(rhs, param2_type);
|
||||
let result = bx.context.new_call(None, func, &[lhs, rhs]);
|
||||
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
|
||||
return Ok(bx.context.new_bitcast(None, result, vec_ty));
|
||||
let result =
|
||||
match (signed, is_add) {
|
||||
(false, true) => {
|
||||
let res = lhs + rhs;
|
||||
let cmp = bx.context.new_comparison(None, ComparisonOp::LessThan, res, lhs);
|
||||
res | cmp
|
||||
},
|
||||
(true, true) => {
|
||||
// Algorithm from: https://codereview.stackexchange.com/questions/115869/saturated-signed-addition
|
||||
// TODO(antoyo): improve using conditional operators if possible.
|
||||
let arg_type = lhs.get_type();
|
||||
// TODO(antoyo): convert lhs and rhs to unsigned.
|
||||
let sum = lhs + rhs;
|
||||
let vector_type = arg_type.dyncast_vector().expect("vector type");
|
||||
let unit = vector_type.get_num_units();
|
||||
let a = bx.context.new_rvalue_from_int(elem_ty, ((elem_width as i32) << 3) - 1);
|
||||
let width = bx.context.new_rvalue_from_vector(None, lhs.get_type(), &vec![a; unit]);
|
||||
|
||||
let xor1 = lhs ^ rhs;
|
||||
let xor2 = lhs ^ sum;
|
||||
let and = bx.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, xor1) & xor2;
|
||||
let mask = and >> width;
|
||||
|
||||
let one = bx.context.new_rvalue_one(elem_ty);
|
||||
let ones = bx.context.new_rvalue_from_vector(None, lhs.get_type(), &vec![one; unit]);
|
||||
let shift1 = ones << width;
|
||||
let shift2 = sum >> width;
|
||||
let mask_min = shift1 ^ shift2;
|
||||
|
||||
let and1 = bx.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, mask) & sum;
|
||||
let and2 = mask & mask_min;
|
||||
|
||||
and1 + and2
|
||||
},
|
||||
(false, false) => {
|
||||
let res = lhs - rhs;
|
||||
let cmp = bx.context.new_comparison(None, ComparisonOp::LessThanEquals, res, lhs);
|
||||
res & cmp
|
||||
},
|
||||
(true, false) => {
|
||||
let arg_type = lhs.get_type();
|
||||
// TODO(antoyo): this uses the same algorithm from saturating add, but add the
|
||||
// negative of the right operand. Find a proper subtraction algorithm.
|
||||
let rhs = bx.context.new_unary_op(None, UnaryOp::Minus, arg_type, rhs);
|
||||
|
||||
// TODO(antoyo): convert lhs and rhs to unsigned.
|
||||
let sum = lhs + rhs;
|
||||
let vector_type = arg_type.dyncast_vector().expect("vector type");
|
||||
let unit = vector_type.get_num_units();
|
||||
let a = bx.context.new_rvalue_from_int(elem_ty, ((elem_width as i32) << 3) - 1);
|
||||
let width = bx.context.new_rvalue_from_vector(None, lhs.get_type(), &vec![a; unit]);
|
||||
|
||||
let xor1 = lhs ^ rhs;
|
||||
let xor2 = lhs ^ sum;
|
||||
let and = bx.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, xor1) & xor2;
|
||||
let mask = and >> width;
|
||||
|
||||
let one = bx.context.new_rvalue_one(elem_ty);
|
||||
let ones = bx.context.new_rvalue_from_vector(None, lhs.get_type(), &vec![one; unit]);
|
||||
let shift1 = ones << width;
|
||||
let shift2 = sum >> width;
|
||||
let mask_min = shift1 ^ shift2;
|
||||
|
||||
let and1 = bx.context.new_unary_op(None, UnaryOp::BitwiseNegate, arg_type, mask) & sum;
|
||||
let and2 = mask & mask_min;
|
||||
|
||||
and1 + and2
|
||||
}
|
||||
};
|
||||
|
||||
return Ok(result);
|
||||
}
|
||||
|
||||
macro_rules! arith_red {
|
||||
@@ -650,33 +958,50 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
add,
|
||||
0.0 // TODO: Use this argument.
|
||||
);
|
||||
arith_red!(simd_reduce_mul_unordered: BinaryOp::Mult, vector_reduce_fmul_fast, false, mul, 1.0);
|
||||
arith_red!(
|
||||
simd_reduce_mul_unordered: BinaryOp::Mult,
|
||||
vector_reduce_fmul_fast,
|
||||
false,
|
||||
mul,
|
||||
1.0
|
||||
);
|
||||
arith_red!(
|
||||
simd_reduce_add_ordered: BinaryOp::Plus,
|
||||
vector_reduce_fadd,
|
||||
true,
|
||||
add,
|
||||
0.0
|
||||
);
|
||||
arith_red!(
|
||||
simd_reduce_mul_ordered: BinaryOp::Mult,
|
||||
vector_reduce_fmul,
|
||||
true,
|
||||
mul,
|
||||
1.0
|
||||
);
|
||||
|
||||
|
||||
macro_rules! minmax_red {
|
||||
($name:ident: $reduction:ident) => {
|
||||
($name:ident: $int_red:ident, $float_red:ident) => {
|
||||
if name == sym::$name {
|
||||
require!(
|
||||
ret_ty == in_elem,
|
||||
InvalidMonomorphizationReturnType { span, name, in_elem, in_ty, ret_ty }
|
||||
);
|
||||
return match in_elem.kind() {
|
||||
ty::Int(_) | ty::Uint(_) | ty::Float(_) => {
|
||||
Ok(bx.$reduction(args[0].immediate()))
|
||||
}
|
||||
_ => return_error!(InvalidMonomorphizationUnsupportedElement {
|
||||
span,
|
||||
name,
|
||||
in_ty,
|
||||
elem_ty: in_elem,
|
||||
ret_ty
|
||||
}),
|
||||
ty::Int(_) | ty::Uint(_) => Ok(bx.$int_red(args[0].immediate())),
|
||||
ty::Float(_) => Ok(bx.$float_red(args[0].immediate())),
|
||||
_ => return_error!(InvalidMonomorphizationUnsupportedElement { span, name, in_ty, elem_ty: in_elem, ret_ty }),
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
minmax_red!(simd_reduce_min: vector_reduce_min);
|
||||
minmax_red!(simd_reduce_max: vector_reduce_max);
|
||||
minmax_red!(simd_reduce_min: vector_reduce_min, vector_reduce_fmin);
|
||||
minmax_red!(simd_reduce_max: vector_reduce_max, vector_reduce_fmax);
|
||||
// TODO(sadlerap): revisit these intrinsics to generate more optimal reductions
|
||||
minmax_red!(simd_reduce_min_nanless: vector_reduce_min, vector_reduce_fmin);
|
||||
minmax_red!(simd_reduce_max_nanless: vector_reduce_max, vector_reduce_fmax);
|
||||
|
||||
macro_rules! bitwise_red {
|
||||
($name:ident : $op:expr, $boolean:expr) => {
|
||||
@@ -699,15 +1024,12 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
}),
|
||||
}
|
||||
|
||||
// boolean reductions operate on vectors of i1s:
|
||||
let i1 = bx.type_i1();
|
||||
let i1xn = bx.type_vector(i1, in_len as u64);
|
||||
bx.trunc(args[0].immediate(), i1xn)
|
||||
args[0].immediate()
|
||||
};
|
||||
return match in_elem.kind() {
|
||||
ty::Int(_) | ty::Uint(_) => {
|
||||
let r = bx.vector_reduce_op(input, $op);
|
||||
Ok(if !$boolean { r } else { bx.zext(r, bx.type_bool()) })
|
||||
Ok(if !$boolean { r } else { bx.icmp(IntPredicate::IntNE, r, bx.context.new_rvalue_zero(r.get_type())) })
|
||||
}
|
||||
_ => return_error!(InvalidMonomorphizationUnsupportedElement {
|
||||
span,
|
||||
@@ -723,6 +1045,9 @@ pub fn generic_simd_intrinsic<'a, 'gcc, 'tcx>(
|
||||
|
||||
bitwise_red!(simd_reduce_and: BinaryOp::BitwiseAnd, false);
|
||||
bitwise_red!(simd_reduce_or: BinaryOp::BitwiseOr, false);
|
||||
bitwise_red!(simd_reduce_xor: BinaryOp::BitwiseXor, false);
|
||||
bitwise_red!(simd_reduce_all: BinaryOp::BitwiseAnd, true);
|
||||
bitwise_red!(simd_reduce_any: BinaryOp::BitwiseOr, true);
|
||||
|
||||
unimplemented!("simd {}", name);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user